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ABSTRACT

Generative adversarial networks (GANs) are innovative techniques for learning generative

models of complex data distributions from samples. Despite remarkable recent improve-

ments in generating realistic images, one of their major shortcomings is the fact that in

practice, they tend to produce samples with little diversity, even when trained on diverse

datasets. This phenomenon, known as mode collapse, has been the main focus of several

recent advances in GANs. Yet there is little understanding of why mode collapse happens

and why existing approaches are able to mitigate mode collapse. We propose a principled

approach to handling mode collapse, which we call packing. The main idea is to modify

the discriminator to make decisions based on multiple samples from the same class, either

real or artificially generated. We borrow analysis tools from binary hypothesis testing—in

particular the seminal result of Blackwell [1]—to prove a fundamental connection between

packing and mode collapse. We show that packing naturally penalizes generators with mode

collapse, thereby favoring generator distributions with less mode collapse during the train-

ing process. Numerical experiments on benchmark datasets suggests that packing provides

significant improvements in practice as well.
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CHAPTER 1: INTRODUCTION

Generative adversarial networks (GANs) are an innovative technique for training genera-

tive models to produce realistic examples from a data distribution [3]. Suppose we are given

N i.i.d. samples X1, . . . , XN from an unknown probability distribution P over some high-

dimensional space Rp (e.g., images). The goal of generative modeling is to learn a model that

enables us to produce samples from P that are not in the training data. Classical approaches

to this problem typically search over a parametric family (e.g., a Gaussian mixture), and fit

parameters to maximize the likelihood of the observed data. Such likelihood-based meth-

ods suffer from the curse of dimensionality in real-world datasets, such as images. Deep

neural network-based generative models were proposed to cope with this problem [4, 5, 3].

However, these modern generative models can be difficult to train, in large part because it

is challenging to evaluate their likelihoods. Generative adversarial networks made a break-

through in training such models, with an innovative training method that uses a minimax

formulation whose solution is approximated by iteratively training two competing neural

networks—hence the name “adversarial networks”.

GANs have attracted a great deal of interest recently. They are able to generate realistic,

crisp, and original examples of images [3, 6] and text [7]. This is useful in image and video

processing (e.g. frame prediction [8], image super-resolution [9], and image-to-image transla-

tion [10]), as well as dialogue systems or chatbots—applications where one may need realistic

but artificially generated data. Further, they implicitly learn a latent, low-dimensional repre-

sentation of arbitrary high-dimensional data. Such embeddings have been hugely successful

in the area of natural language processing (e.g. word2vec [11]). GANs have the potential to

provide such an unsupervised solution to learning representations that capture semantics of

the domain to arbitrary data structures and applications.

Primer on GANs. Neural-network-based generative models are trained to map a (typi-

cally lower dimensional) random variable Z ∈ Rd from a standard distribution (e.g. spherical

Gaussian) to a domain of interest, like images. In this context, a generator is a function

G : Rd → Rp, which is chosen from a rich class of parametric functions like deep neural

networks. In unsupervised generative modeling, one of the goals is to train the parameters

of such a generator from unlabelled training data drawn independently from some real world

dataset (such as celebrity faces in CelebA [12] or natural images from CIFAR-100 [13]), in

order to produce examples that are realistic but different from the training data.

A breakthrough in training such generative models was achieved by the innovative idea of
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GANs [3]. GANs train two neural networks: one for the generator G(Z) and the other for

a discriminator D(X). These two neural networks play a dynamic minimax game against

each other. An analogy provides the intuition behind this idea. The generator is acting as

a forger trying to make fake coins (i.e., samples), and the discriminator is trying to detect

which coins are fake and which are real. If these two parties are allowed to play against each

other long enough, eventually both will become good. In particular, the generator will learn

to produce coins that are indistinguishable from real coins (but preferably different from the

training coins he was given).

Concretely, we search for (the parameters of) neural networks G and D that optimize the

following type of minimax objective:

G∗ ∈ arg min
G

max
D

V (G,D)

= arg min
G

max
D

EX∼P [log(D(X))] + EZ∼PZ [log(1−D(G(Z)))] , (1.1)

where P is the distribution of the real data, and PZ is the distribution of the input code

vector Z. Here D is a function that tries to distinguish between real data and generated

samples, whereas G is the mapping from the latent space to the data space. Critically,

[3] shows that the global optimum of (1.1) is achieved if and only if P = Q, where Q is

the generated distribution of G(Z). We refer to Chapter 5 for a detailed discussion of this

minimax formulation. The solution to the minimax problem (1.1) can be approximated by

iteratively training two “competing” neural networks, the generator G and discriminator

D. Each model can be updated individually by backpropagating the gradient of the loss

function to each model’s parameters.

Mode Collapse in GANs. One major challenge in training GAN is a phenomenon known

as mode collapse, which collectively refers to the lack of diversity in generated samples. One

manifestation of mode collapse is the observation that GANs commonly miss some of the

modes when trained on multimodal distributions. For instance, when trained on hand-

written digits with ten modes, the generator might fail to produce some of the digits [14].

Similarly, in tasks that translate a caption into an image, generators have been shown to

generate series of nearly-identical images [15]. Mode collapse is believed to be related to the

training instability of GANs—another major challenge in GANs.

Several approaches have been proposed to fight mode collapse, e.g. [16, 17, 2, 14, 18, 19,

20, 21]. We discuss prior work on mode collapse in detail in Chapter 2. Proposed solu-

tions rely on modified architectures [16, 17, 2, 14], loss functions [19, 22], and optimization

algorithms [18]. Although each of these proposed methods is empirically shown to help
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mitigate mode collapse, it is not well understood how the proposed changes relate to mode

collapse. Previously-proposed heuristics fall short of providing rigorous explanations on

why they achieve empirical gains, especially when those gains are sensitive to architecture

hyperparameters.

Our Contributions. In this work, we examine GANs through the lens of binary hypothesis

testing. By viewing the discriminator as performing a binary hypothesis test on samples (i.e.,

whether they were drawn from distribution P or Q), we can apply insights from classical

hypothesis testing literature to the analysis of GANs. In particular, this hypothesis-testing

viewpoint provides a fresh perspective and understanding of GANs that leads to the following

contributions:

1. The first contribution is conceptual: we propose a formal mathematical definition of

mode collapse that abstracts away the geometric properties of the underlying data

distributions (see Chapter 5.1). This definition is closely related to the notions of false

alarm and missed detection in binary hypothesis testing (see Chapter 5.2.1). Given

this definition, we provide a new interpretation of the pair of distributions (P,Q) as

a two-dimensional region called the mode collapse region, where P is the true data

distribution and Q the generated one. The mode collapse region provides new insights

on how to reason about the relationship between those two distributions (see Chapter

5.1).

2. The second contribution is analytical: through the lens of hypothesis testing and mode

collapse regions, we show that if the discriminator is allowed to see samples from the

m-th order product distributions Pm and Qm instead of the usual target distribution P

and generator distribution Q, then the corresponding loss when training the generator

naturally penalizes generator distributions with strong mode collapse (see Chapter

5.2). Hence, a generator trained with this type of discriminator will be encouraged

to choose a distribution that exhibits less mode collapse. The region interpretation

of mode collapse and corresponding data processing inequalities provide the analysis

tools that allows us to prove strong and sharp results with simple proofs (see Chapter

6). This follows a long tradition in information theory literature (e.g. [23, 24, 25,

26, 27, 28, 29, 30, 31]) where operational interpretations of mutual information and

corresponding data processing inequalities have given rise to simple proofs of strong

technical results.

3. The third contribution is algorithmic: based on the insights from the region interpre-

tation of mode collapse, we propose a new GAN framework to mitigate mode collapse,
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which we call PacGAN. PacGAN can be applied to any existing GAN, and it requires

only a small modification to the discriminator architecture (see Chapter 3). The key

idea is to pass m “packed” or concatenated samples to the discriminator, which are

jointly classified as either real or generated. This allows the discriminator to do bi-

nary hypothesis testing based on the product distributions (Pm, Qm), which naturally

penalizes mode collapse (as we show in Chapter 5.2). We demonstrate on benchmark

datasets that PacGAN significantly improves upon competing approaches in mitigat-

ing mode collapse (see Chapter 4). Further, unlike existing approaches on jointly using

multiple samples, e.g. [14], PacGAN requires no hyper parameter tuning and incurs

only a slight overhead in the architecture.

Outline. This work is structured as follows: first we describe in detail the related work on

GANs in general and mode collapse in particular in Chapter 2. In Chapter 3, we present the

PacGAN framework , and evaluate it empirically according to the metrics and experiments

proposed in prior work (Chapter 4). In Chapter 5, we propose a new definition of mode

collapse, and provide analyses showing that PacGAN mitigates mode collapse. The proofs

of the main results are provided in Chapter 6.
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CHAPTER 2: RELATED WORK

The literature on GANs has documented three primary, closely-related challenges: (i)

they are unstable to train, (ii) they are challenging to evaluate, and (iii) they exhibit mode

collapse (more broadly, they do not generalize). Much research has emerged in recent years

addressing these challenges. Our work explicitly addresses the challenge (iii). We give a

brief overview of the related work on each of these challenges, and its relation to our work.

Training instability. GANs’ alternating generator and discriminator updates can lead to

significant instability during training. This instability manifests itself as oscillating values of

the loss function that exceed variations caused by minibatch processing [32]. Such variability

makes it challenging to evaluate when training has converged, let alone which model one

should choose among those obtained throughout the training process. This phenomenon

is believed to arise because in practice, the learned distribution and the true distribution

lie on disjoint manifolds in a high-dimensional space [22]. As such, the discriminator can

often learn to perfectly distinguish generated and real samples. On real data, the discrimi-

nator (correctly) learns to output ‘1’, and vice versa on generated data. This is believed in

GAN literature to cause the generator loss function to have a negligible gradient, leading to

unstable parameter updates.

Several papers have proposed methods for mitigating this instability, generally taking one

of two approaches. The first relies on changing the optimized distance metric. Regular GANs

optimize the Jensen-Shannon divergence between the true distribution and the learned one

[3]. Jensen-Shannon divergence can behave poorly in regions where the two distributions

have nonoverlapping support [22], so other works have proposed alternative distance metrics,

including Wasserstein distance [22] and neural network distance [33].

Another approach is to propose architectural changes that empirically improve training

stability. For example, Salimans et al. proposed a number of heuristic tricks for improving

the training of GANs, including minibatch discrimination, reference batch normalization,

and feature mapping [14]. Our work most closely resembles minibatch discrimination from

[14], which also inputs multiple images to the discriminator. We provide a detailed compar-

ison between this proposed minibatch discriminator and ours later in this Chapter.

Evaluation Techniques. Generative models (including GANs) are notoriously difficult

to evaluate. Ideally, one would measure the distance between the true distribution and the

learned one. However, typical generative models can only produce samples from a learned

distribution, and on real datasets, the true distribution is often unknown. As such, prior

5



work on GANs has used a number of heuristic evaluation techniques.

The most common evaluation technique is visual inspection. Many papers produce a

collection of generated images, and compare them to the underlying dataset [3, 34, 32],

or ask annotators to evaluate the realism of generated images [14]. This approach can be

augmented by interpolating between two points in the latent space and illustrating that the

GAN produces a semantically meaningful interpolation between the generated images [17].

This approach is useful to the extent that some GANs produce visually unrealistic images,

but it is expensive, unreliable, and it does not help identify generalization problems [35].

Another common approach involves estimating the likelihood of a holdout set of test data

under the learned distributions. The learned distribution is estimated using a standard kernel

density estimator (KDE)[36]. However, KDEs are known to have poor performance in high

dimensions, and in practice, the error in KDE is often larger than the distance between real

and learned distributions [36]. Hence, it is unclear how meaningful such estimates are. One

proposed approach uses annealed importance sampling (AIS) instead of KDE to estimate

log-likelihoods [36], with significantly increased accuracy levels.

An increasing number of papers are using classification-based evaluation metrics. Naively,

GANs trained on labelled datasets can pass their outputs through a pre-trained classifier.

The classifier outputs indicate which modes are represented in the generated samples [17, 14,

2]. This is useful for measuring the first type of mode collapse (missing modes), but it cannot

reveal the second type (partial collapse within a mode). To provide a more nuanced view

of the problem, [37] recently proposed a more general classification-based evaluation metric,

in which they train a classifier on generated data and real data, and observe differences in

classifier performance on a holdout set of test data. While this approach does not directly

evaluate partial mode collapse, it is more likely to implicitly measure it by producing weaker

classifiers when trained on generated data. On datasets that are not labelled, some papers

have relied on human classification, asking human annotators to ‘discriminate’ whether an

image is real or generated [6].

Mode Collapse/Generalization. Mode collapse collectively refer to the phenomenon of

lack of divergence in the generated samples. This includes trained generators assigning low

probability mass to significant subsets of the data distribution’s support, and hence losing

some modes. This also includes the phenomenon of trained generators mapping two latent

vectors that are far apart to the same or similar data samples. Mode collapse is a byproduct

of poor generalization—i.e., the generator does not learn the true data distribution; this

phenomenon is a topic of recent interest [33, 38]. Prior work has observed two types of mode

collapse: entire modes from the input data are missing from the generated data (e.g., in a
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dataset of animal pictures, lizards never appear), or the generator only creates images within

a subset of a particular mode (e.g., lizards appear, but only lizards that are a particular shade

of green) [32, 39, 38, 16, 18, 15]. These phenomena are not well-understood, but a number

of explanatory hypotheses have been proposed:

1. The objective function is ill-suited to the problem [22], potentially causing distributions

that exhibit mode collapse to be local minima in the optimization objective function.

2. Weak discriminators cannot detect mode collapse, either due to low capacity or a

poorly-chosen architecture [18, 14, 33, 40].

3. The maximin solution to the GAN game is not the same as the minimax solution [32].

The impact and interactions of these hypotheses are not well-understood, but we show in this

work that a packed discriminator can significantly reduce mode collapse, both theoretically

and in practice. In particular, the method of packing is simple, and leads to clean theoretical

analyses. We compare the proposed approach of packing to three main approaches in the

literature for mitigating mode collapse:

(1) Joint Architectures. The most common approach to address mode collapse involves

an encoder-decoder architecture, in which the GAN learns an encoding G−1(X) from the

data space to a lower-dimensional latent space, on top of the usual decoding G(Z) from

the latent space to the data space. Examples include bidirectional GANs [17], adversarially

learned inference (ALI) [16], and VEEGAN [2]. These joint architectures feed both the

latent and the high-dimensional representation of each data point into the discriminator:

{(Zi, G(Zi))} for the generated data and {(G−1(Xi), Xi)} for the real data. In contrast,

classical GANs use only the decoder, and feed only high-dimensional representations into

the discriminator. Empirically, training these components jointly seems to improve the

GAN performance overall, while also producing useful feature vectors that can be fed into

downstream tasks like classification. Nonetheless, we find experimentally that using the same

generator architectures and discriminator architectures, packing captures more modes than

these joint architectures, with significantly less overhead in the architecture and computation.

(2) Augmented Discriminators. Several papers have observed that discriminators lose

discriminative power by observing only one (unlabeled) data sample at a time [32, 14]. A

natural solution for labelled datasets is to provide the discriminator with image labels. This

has been found to work well in practice [19], though it does not generalize to unlabelled

data. A more general technique is minibatch discrimination [14]. Like our proposed packing

architecture, minibatch discrimination feeds an array of data samples to the discriminator.
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However, unlike packing, minibatch discrimination proposed in [14] is complicated both com-

putationally and conceptually, and highly sensitive to the delicate hyper-parameter choices.

At a high level, the main idea in minibatch discrimination is to give the discriminator a side

information coming from a minibatch, and use it together with each of the single example

in the minibatch to classify each sample. The proposed complex architecture to achieve this

goal is as follows.

Let f(Xi) denote a vector of (latent) features for input Xi produced by some intermediate

layer in the discriminator. A tensor T is learned such that the tensor product T [I, I, f(Xi)]

gives a latent matrix representation Mi of the input Xi. The notation T [I, I, f(Xi)] indicates

a tensor to matrix linear mapping, where you take the third dimension and apply a vector

f(Xi). The L1 distance across the rows of the Mi’s are computed for each pair of latent

matrices in the minibatch to give a measure cb(Xi, Xj) = exp(−‖Mi,b − Mj,b‖L1)). This

minibatch layer outputs o(Xi)b =
∑n

j=1 cb(Xi, Xj). This is concatenated with the original

latent feature f(Xi) to be passed through the upper layers of the discriminator architecture.

While the two approaches start from a similar intuition that batching or packing multiple

samples gives stronger discriminator, the proposed architectures are completely different.

PacGAN is easier to implement, quantitatively shows strong performance in experiments,

and is principled: our theoretical analysis rigorously shows that packing is a principled way

to use multiple samples at the discriminator.

(3) Optimization-based solutions. Another potential source of mode collapse is imper-

fect optimization algorithms. Exact optimization of the GAN minimax objective function

is computationally intractable, so GANs typically use iterative parameter updates between

the generator and discriminator: for instance, we update the generator parameters through

k1 gradient descent steps, followed by k2 discriminator parameter updates. Recent work

has studied the effects of this compromise, showing that iterative updates can lead to non-

convergence in certain settings [40]—a worse problem than mode collapse. Unrolled GANs

[18] propose a middle ground, in which the optimization takes k (usually five) gradient steps

into account when computing gradients. These unrolled gradients affect the generator pa-

rameter updates by better predicting how the discriminator will respond. This approach

is conjectured to spread out the generated samples, making it harder for the discriminator

to distinguish real and generated data. The primary drawback of this approach is com-

putational cost; packing achieves better empirical performance with smaller computational

overhead and training complexity.

Theoretical results on GANs. A breakthrough in theoretical analysis of GANs was

achieved by Arora et al. in [33], where several theoretical contributions were made. Recall
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that typical assumption in theoretical analyses is (a) infinite samples that allows one to work

with population expectations, and (b) infinite expressive power at the discriminator. This

seminal work addresses both of these assumptions in the following way. First, to show that

existing losses (such as Wasserstein loss [22] and cross entropy loss [3]) do not generalize,

[33] relaxes both (a) and (b). Under this quite general setting, a GAN is trained on these

typical choices of losses with a target distribution of a spherical Gaussian. Then, with a

discriminator with enough expressive power, the training loss will converge to its maximum,

which is proven to be strictly bounded away from zero for this Gaussian example. The

implication of this analysis is that a perfect generator with infinite expressive power still

will not be able to generate the target Gaussian distribution, as it is penalize severely

in the empirical loss defined by the training samples. This observation leads to the second

contribution of the work, where a proper distance is defined, called neural network divergence,

that takes into account the finite expressive power of neural networks. It is proven that the

neural network divergence has a much better generalization properties than Jensen-Shannon

divergence or Wasserstein distance. This implies that this new neural network distance can

better capture how the GAN performs for a specific choice of a loss. Based on this intuition,

a new class of generators called, MIX+GAN, are proposed that are provably shown to fool a

neural network discriminator with finite expressive power (i.e. finite number of parameters).

Liu et al. study the effects of discriminator family with finite expressive power and the

distributional convergence properties of various choices of the loss functions in [41]. It is

shown that the restricted expressive power of the discriminator (including the popular neural

network based discriminators) have the effect of encouraging moment-matching conditions

to be satisfied. Further, it is shown that for a broad class of loss functions, convergence in the

loss function implies distributional weak convergence, which generalizes known convergence

results of [42, 22].

In [40], Li et al. take a first step towards understanding of GAN training dynamics. A

particular training example of learning from a mixture of two Gaussians is carefully studied,

which exhibit all all common failure cases: mode collapse and oscillatory behavior. This

holds even with improve GAN training such as unrolled GANs [18]. However, it is both

experimentally and theoretically shown that GAN with an optimal discriminator converges.

This is first convergence proof of a non-trivial GAN dynamics, and shows a clear dichotomy

between the GAN dynamics from an optimal discriminator and one from a more practical

simultaneous updates. This analyses reveal the root cause, called discriminator collapse;

when the generator is good at fooling the discriminator, the discriminator gradient updates

are stuck in a local minimum.

Feizi et al. address the effect of generator and discriminator architectures for a simpler
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case of learning a single Gaussian distribution in [43]. By connecting the loss function to

supervised learning, the generalization performance of a simple LQG-GAN is analyzed where

the generator is linear, the loss is quadratic, and the data is coming from a Gaussian dis-

tribution. An interesting connection between principal component analysis and the optimal

generator of this particular GAN is made. The sample complexity of this problem is shown

to be linear in the dimension, if the discriminator is constrained to be quadratic, where as

for general discriminators the sample complexity can be much larger.
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CHAPTER 3: PACGAN: A NOVEL FRAMEWORK FOR MITIGATING
MODE COLLAPSE

We propose a new framework for mitigating mode collapse in GANs. We start with an ar-

bitrary existing GAN1, which is typically defined by a generator architecture, a discriminator

architecture, and a loss function. Let us call this triplet the mother architecture.

The PacGAN framework maintains the same generator architecture and loss function as

the mother architecture, and makes a slight change only to the discriminator. That is,

instead of using a discriminator D(X) that maps a single (either from real data or from

the generator) to a (soft) label, we use an augmented discriminator D(X1, X2, . . . , Xm) that

maps m samples, jointly coming from either real data or the generator, to a single (soft) label.

These m samples are drawn independently from the same distribution—either real (jointly

labelled as Y = 1) or generated (jointly labelled as Y = 0). We refer to the concatenation of

samples with the same label as packing, the resulting concatenated discriminator as a packed

discriminator, and the number m of concatenated samples as the degree of packing. We

call this approach a framework instead of an architecture, because the proposed approach of

packing can be applied to any existing GAN, using any architecture and any loss function,

as long as it uses a discriminator of the form D(X) that classifies a single input sample.

We propose the nomenclature “Pac(X)(m)” where (X) is the name of the mother architec-

ture, and (m) is an integer that refers to how many samples are packed together as an input

to the discriminator. For example, if we take an original GAN and feed the discriminator

three packed samples as input, we call this “PacGAN3”. If we take the celebrated DCGAN

[34] and feed the discriminator four packed samples as input, we call this “PacDCGAN4”.

When we refer to the generic principle of packing, we use PacGAN without an subsequent

integer.

How to pack a discriminator. Note that there are many ways to change the discriminator

architecture to accept packed input samples. We propose to keep all hidden layers of the

discriminator exactly the same as the mother architecture, and only increase the number of

nodes in the input layer by a factor of m. For example, in Figure 3.1, suppose we start with

a mother architecture in which the discriminator is a fully-connected feed-forward network.

Here, each sample X lies in a space of dimension p = 2, so the input layer has two nodes.

Now, under PacGAN2, we would multiply the size of the input layer by the packing degree

(in this case, two), and the connections to the first hidden layer would be adjusted so that

the first two layers remain fully-connected, as in the mother architecture. The grid-patterned

1For a list of some popular GANs, we refer to the GAN zoo: https://github.com/hindupuravinash/the-
gan-zoo
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Figure 3.1: PacGAN(m) augments the input layer by a factor of m. The number of edges
between the first two layers are increased accordingly to preserve the connectivity of the
mother architecture (typically fully-connected). Packed samples are fed to the input layer
in a concatenated fashion; the grid-patterned nodes represent input nodes for the second
input sample.

nodes in Figure 3.1 represent input nodes for the second sample.

Similarly, when packing a DCGAN, which uses convolutional neural networks for both the

generator and the discriminator, we simply stack the images into a tensor of depth m. For

instance, the discriminator for PacDCGAN5 on the MNIST dataset of handwritten images

[44] would take an input of size 28 × 28 × 5, since each individual black-and-white MNIST

image is 28×28 pixels. Only the input layer and the number of weights in the corresponding

first convolutional layer will increase in depth by a factor of five. By modifying only the

input dimension and fixing the number of hidden and output nodes in the discriminator, we

can focus purely on the effects of packing in our numerical experiments in Chapter 4.

How to train a packed discriminator. Just as in standard GANs, we train the packed

discriminator with a bag of samples from the real data and the generator. However, each

minibatch in the stochastic gradient descent now consists of packed samples. Each packed

sample is of the form (X1, X2, . . . , Xm, Y ), where the label is Y = 1 for real data and Y = 0

for generated data, and the m independent samples from either class are jointly treated as

a single, higher-dimensional feature (X1, . . . , Xm). The discriminator learns to classify m

packed samples jointly. Intuitively, packing helps the discriminator detect mode collapse

because lack of diversity is more obvious in a set of samples than in a single sample. Fun-

damentally, packing allows the discriminator to observe samples from product distributions,

which highlight mode collapse more clearly than unmodified data and generator distribu-

tions. We make this statement precise in Chapter 5.

Notice that the computational overhead of PacGAN training is marginal, since only the

input layer of the discriminator gains new parameters. Furthermore, we keep all training

hyperparameters identical to the mother architecture, including the stochastic gradient de-

scent minibatch size, weight decay, learning rate, and the number of training epochs. This
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is in contrast with other approaches for mitigating mode collapse that require significant

computational overhead and/or delicate hyperparameter selection [17, 16, 14, 2, 18].

Computational complexity. The exact computational complexity overhead of PacGAN

(compared to GANs) is architecture-dependent, but can be computed in a straightforward

manner. For example, consider a discriminator with w fully-connected layers, each containing

g nodes. Since the discriminator has a binary output, the (w+ 1)th layer has a single node,

and is fully connected to the previous layer. We seek the computational complexity of a single

minibatch parameter update, where each minibatch contains r samples. Backpropagation

in such a network is dominated by the matrix-vector multiplication in each hidden layer,

which has complexity O(g2) per input sample, assuming a naive implementation. Hence the

overall minibatch update complexity is O(rwg2). Now suppose the input layer is expanded

by a factor of m. If we keep the same number of minibatch elements, the per-minibatch cost

grows to O((w +m)rg2). We find that in practice, even m = 2 or m = 3 give good results.
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CHAPTER 4: EXPERIMENTS

On standard benchmark datasets, we compare PacGAN to several baseline GAN architec-

tures, some of which are explicitly proposed to mitigate mode collapse: GAN [3], DCGAN

[14], VEEGAN [2], Unrolled GANs [18], and ALI [17]. We also implicitly compare against

BIGAN [16], which is conceptually identical to ALI. To isolate the effects of packing, we

make minimal choices in the architecture and hyperparameters of our packing implemen-

tation. For each experiment, we evaluate packing by taking a standard, baseline GAN

implementation that was not designed to prevent mode collapse, and adding packing in the

discriminator. In particular, our goal for this Chapter is to reproduce experiments from

existing literature, apply the packing framework to the simplest GAN among those in the

baseline, and showcase how packing affects the performance.

Metrics. For consistency with prior work, we measure several previously-used metrics. On

datasets with clear, known modes (e.g., Gaussian mixtures, labelled datasets), prior papers

have counted the number of modes that are produced by a generator [16, 18, 2]. In labelled

datasets, this number can be evaluated using a third-party trained classifier that classifies the

generated samples [14]. In Gaussian Mixture Models (GMMs), for example in [2], a mode is

considered lost if there is no sample in the generated test data within x standard deviations

from the center of that mode. In [2], x is set to be three for 2D-ring and 2D-grid, and ten for

1200D-synthetic. A second metric used in [2] is the number of high-quality samples, which is

the proportion of the samples that are within x standard deviation from the center of a mode.

Finally, the reverse Kullback-Leibler divergence over the modes has been used to measure

the quality of mode collapse as follows. Each of the generated test samples is assigned to

its closest mode; this induces an empirical, discrete distribution with an alphabet size equal

to the number of observed modes in the generated samples. A similar induced discrete

distribution is computed from the real data samples. The reverse KL divergence between

the induced distribution from generated samples and the induced distribution from the real

samples is used as a metric. Each of these three metrics has shortcomings—for example, the

number of observed modes does not account for class imbalance among generated modes,

and all of these metrics only work for datasets with known modes. Defining an appropriate

metric for evaluating GANs is an active research topic [35, 36, 37].

Datasets. We use a number of synthetic and real datasets for our experiments, all of which

have been studied or proposed in prior work. The 2D-ring [2] is a mixture of eight two-

dimensional spherical Gaussians with means (cos((2π/8)i), sin((2π/8)i)) and variances 10−4
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in each dimension for i ∈ {1, . . . , 8}. The 2D-grid [2] is a mixture of 25 two-dimensional

spherical Gaussians with means (−4 + 2i,−4 + 2j) and variances 0.0025 in each dimension

for i, j ∈ {0, 1, 2, 3, 4}.
To examine real data, we use the MNIST dataset [44], which consists of 70,000 images

of handwritten digits, each 28 × 28 pixels. Unmodified, this dataset has 10 modes, one for

each digit. As done in Mode-regularized GANs [19], Unrolled GANs [18] and VEEGAN

[2], we augment the number of modes by stacking the images. That is, we generate a new

dataset of 128,000 images, in which each image consists of three randomly-selected MNIST

images that are stacked into a 28× 28× 3 image in RGB. This new dataset has (with high

probability) 1000 = 10× 10× 10 modes. We refer to this as the stacked MNIST dataset.

4.1 SYNTHETIC DATA EXPERIMENTS FROM VEEGAN [2]

Our first experiment evaluates the number of modes and the number of high-quality sam-

ples for the 2D-ring and the 2D-grid. Results are reported in Table 4.1. The first four rows

are copied directly from Table 1 in [2]. The last three rows contain our own implemen-

tation of PacGANs. We do not make any choices in the hyper-parameters, the generator

architecture, the discriminator architecture, and the loss. Our implementation attempts to

reproduce the VEEGAN architecture to the best of our knowledge, as described below.

Target distribution GAN PacGAN2

Figure 4.1: Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and
the learned generators using GAN (middle) and PacGAN2 (right). PacGAN2 captures all
of the 25 modes.

Architecture and hyper-parameters. All of the GANs we implemented in this ex-

periment use the same overall architecture, which is chosen to match the architecture in
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VEEGAN’s code [2]. The generators have two hidden layers, 128 units per layer with ReLU

activation, trained with batch normalization [45]. The input noise is a two dimensional

spherical Gaussian with zero mean and unit variance. The discriminator has one hidden

layer, 128 units on that layer. The hidden layer uses LinearMaxout with 5 maxout pieces,

and no batch normalization is used in the discriminator.

We train each GAN with 100,000 total samples, and a mini-batch size of 100 samples; train-

ing is run for 200 epochs. The discriminator’s loss function is log(1 + exp(−D(real data))) +

log(1+exp(D(generated data))), except for VEEGAN which has an additional regularization

term. The generator’s loss function is

log(1 + exp(D(real data))) + log(1 + exp(−D(generated data))).

Adam [46] stochastic gradient descent is applied with the generator weights and the dis-

criminator weights updated once per mini-batch. At testing, we use 2500 samples from the

learned generator for evaluation. Each metric is evaluated and averaged over 10 trials.

2D-ring 2D-grid
Modes high quality Modes high quality

(Max 8) samples (Max 25) samples
GAN [3] 1.0 99.30 % 3.3 0.5 %
ALI [17] 2.8 0.13 % 15.8 1.6 %
Unrolled GAN [18] 7.6 35.60 % 23.6 16.0 %
VEEGAN [2] 8.0 52.90 % 24.6 40.0 %
PacGAN2 (ours) 8.0±0.0 78.5±7.7 % 24.6±0.9 65.8±13.4 %
PacGAN3 (ours) 8.0±0.0 84.0±6.1 % 24.9±0.3 71.4±13.8 %
PacGAN4 (ours) 8.0±0.0 82.7±11.3 % 25.0±0.0 76.0±7.1 %

Table 4.1: Two measures of mode collapse proposed in [2] for two synthetic mixtures of
Gaussians: number of modes captured by the generator and percentage of high quality
samples. Our results are averaged over 10 trials shown with the standard error.

Results. Table 4.1 shows that PacGAN outperforms or matches the baseline schemes,

both in the number of modes captured and the percentage of high quality samples. As

expected, increasing the degree m of packing seems to increase the average number of modes

found, though the increases are marginal for easy tasks. In the 2D grid and ring, we find

that PacGAN slightly outperforms VEEGAN, but the proposed datasets seem not to be

challenging enough to highlight meaningful differences. However, one can clearly see the

gain of packing by comparing the GAN in the first row (which is the mother architecture)
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and PacGANs in the last rows. The simple change we make to the mother architecture

according to the principle of packing makes a significant difference in performance, and the

overhead of changes made to the mother architecture are minimal compared to the baselines

[17, 18, 2].

Note that maximizing the number of high-quality samples is not necessarily indicative of a

good generative model. First, we expect some fraction of probability mass to lie outside the

“high-quality” boundary, and that fraction increases with the dimensionality of the dataset.

For reference, we find empirically that the expected fraction of high-quality samples in the

true data distribution for the 2D ring and grid are both 98.9%, which corresponds to the

theoretical ratio for a single 2D Gaussian. These values are higher than the fractions found

by PacGAN, indicating room for improvement. However, a generative model could output

100% high-quality points by learning very few modes (as is the case for GANs in the 2D ring

in Table 4.1).

Note that our goal is not to compete with the baselines of ALI, Unrolled GAN, and VEE-

GAN, but to showcase the improvement that can be obtained with packing. In this spirit, we

can easily apply our framework to other baselines and test “PacALI”, “PacUnrolledGAN”,

and “PacVEEGAN”. In fact, we expect that most GAN architectures can be packed to im-

prove sample quality. However, for these benchmark tests, we see that packing the simplest

GAN is sufficient.

4.2 STACKED MNIST EXPERIMENTS

In our next experiments, we evaluate mode collapse on the stacked MNIST dataset (de-

scribed at the beginning of Chapter 4). These experiments are direct comparisons to anal-

ogous experiments in VEEGAN [2] and Unrolled GANs [18]. For these evaluations, we

generate 26,000 samples from the generator. Each of the three channels in each sample is

classified by a pre-trained third-party MNIST classifier, and the resulting three digits deter-

mine which of the 1, 000 modes the sample belongs to. We measure the number of modes

captured, as well as the KL divergence between the generated distribution over modes and

the expected true one (i.e., a uniform distribution over the 1,000 modes).

Hyperparameters. For these experiments, we train each GAN on 128,000 samples, with

a mini-batch size of 64. The generator’s loss function is -log(D(generated data)), and the

discriminator’s loss function is -log(D(real data))-log(1-D(generated data)). We update the

generator parameters twice and the discriminator parameters once in each mini-batch, and

train the generators over 50 epochs. For testing, we generate 26,000 samples, and evaluate
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Target distribution DCGAN PacDCGAN2

Figure 4.2: True distribution (left), DCGAN generated samples (middle), and
PacDCGAN2 generated samples (right) from the stacked-MNIST dataset show
PacDCGAN2 captures more diversity while producing sharper images.

the empirical KL divergence and number of modes covered. Finally, we average these values

over 10 runs of the entire pipeline.

4.2.1 VEEGAN [2] Experiment

In this experiment, we replicate Table 2 from [2], which measured the number of observed

modes in a generator trained on the stacked MNIST dataset, as well as the KL divergence

of the generated mode distribution.

Architecture. In line with prior work [2], we used a DCGAN-like architecture for

these experiments, which is based on the code at https://github.com/carpedm20/

DCGAN-tensorflow. In particular, the generator and discriminator architectures are as fol-

lows:

Generator:

layer #outputs kernel size stride activation

Input: z ∼ U(−1, 1)100 100

Fully connected 2*2*512 ReLU

Transposed Convolution 4*4*256 5*5 2 ReLU

Transposed Convolution 7*7*128 5*5 2 ReLU

Transposed Convolution 14*14*64 5*5 2 ReLU

Transposed Convolution 28*28*3 5*5 2 Tanh
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Discriminator (for PacDCGANm):

layer #outputs kernel size stride BN activation

Input: x ∼ pmdata 28*28*(3*m)

Convolution 14*14*64 5*5 2 LeakyReLU

Convolution 7*7*128 5*5 2 Yes LeakyReLU

Convolution 4*4*256 5*5 2 Yes LeakyReLU

Convolution 2*2*512 5*5 2 Yes LeakyReLU

Fully connected 1 Sigmoid

Results. Results are shown in Table 4.2. Again, the first four rows are copied directly

from [2]. The last three rows are computed using a basic DCGAN, with packing in the

discriminator. We find that packing gives good mode coverage, reaching all 1,000 modes in

every trial. Given a DCGAN that can capture at most 99 modes on average (our mother

architecture), the principle of packing, which is a small change in the architecture, is able

to improve performance to capture all 1,000 modes. Again we see that packing the simplest

DCGAN is sufficient to fully capture all the modes in this benchmark tests, and we do not

pursue packing more complex baseline architectures. Existing approaches to mitigate mode

collapse, such as ALI, Unrolled GANs, and VEEGAN, are not able to capture as many

modes.

Stacked MNIST
Modes (Max 1000) KL

DCGAN [34] 99.0 3.40
ALI [17] 16.0 5.40
Unrolled GAN [18] 48.7 4.32
VEEGAN [2] 150.0 2.95
PacDCGAN2 (ours) 1000.0±0.0 0.06±0.01
PacDCGAN3 (ours) 1000.0±0.0 0.06±0.01
PacDCGAN4 (ours) 1000.0±0.0 0.07±0.01

Table 4.2: Two measures of mode collapse proposed in [2] for the stacked MNIST dataset:
number of modes captured by the generator and reverse KL divergence over the generated
mode distribution.

Note that other classes of GANs may also be able to learn most or all of the modes if

tuned properly. For example, [18] reports that regular GANs can learn all 1,000 modes even

without unrolling if the discriminator is large enough, and if the discriminator is half the
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size of the generator, unrolled GANs recover up to 82% of the modes when the unrolling

parameter is increased to 10. To explore this effect, we conduct further experiments on

unrolled GANs in Chapter 4.2.2.

4.2.2 Unrolled GAN [18] Experiment

This experiment is designed to replicate Table 1 from Unrolled GANs [18]. Unrolled

GANs exploit the observation that iteratively updating discriminator and generator model

parameters can contribute to training instability. To mitigate this, they update model

parameters by computing the loss function’s gradient with respect to k ≥ 1 sequential

discriminator updates, where k is called the unrolling parameter. [18] reports that unrolling

improves mode collapse as k increases, at the expense of greater training complexity.

Unlike Chapter 4.2.1, which reported a single metric for unrolled GANs, this experiment

studies the effect of the unrolling parameter and the discriminator size on the number of

modes learned by a generator. The key differences between these trials and the unrolled

GAN row in Table 4.2 are threefold: (1) the unrolling parameters are different, (2) the

discriminator sizes are different, and (3) the generator and discriminator architectures are

chosen according to Appendix E in [18].

Results. Our results are reported in Tables 4.3 and 4.4. The first four rows are copied

from [18]. As before, we find that packing seems to increase the number of modes covered.

Additionally, in both experiments, PacDCGAN finds more modes on average than Unrolled

GANs with k = 10, with lower reverse KL divergences between the mode distributions. This

suggests that packing has a more pronounced effect than unrolling. However, note that the

standard error for PacDCGANs is larger than that reported in [18]; this may be due to our

relatively small sample size of 10.
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D is 1/4 size of G
Modes (Max 1000) KL

DCGAN [34] 30.6±20.73 5.99±0.42
Unrolled GAN, 1 step [18] 65.4±34.75 5.91±0.14
Unrolled GAN, 5 steps [18] 236.4±63.30 4.67±0.43
Unrolled GAN, 10 steps [18] 327.2±74.67 4.66±0.46
PacDCGAN2 (ours) 370.8±244.34 3.33±1.02
PacDCGAN3 (ours) 534.3±103.68 2.11±0.52
PacDCGAN4 (ours) 557.7±101.37 2.06±0.61

Table 4.3: Modes covered and KL divergence for unrolled GANs as compared to
PacDCGANs for various unrolling parameters, discriminator sizes, and the degree of
packing.

D is 1/2 size of G
Modes (Max 1000) KL

DCGAN [34] 628.0±140.9 2.58±0.75
Unrolled GAN, 1 step [18] 523.6±55.77 2.44±0.26
Unrolled GAN, 5 steps [18] 732.0±44.98 1.66±0.09
Unrolled GAN, 10 steps [18] 817.4±37.91 1.43±0.12
PacDCGAN2 (ours) 877.1±51.96 0.99±0.13
PacDCGAN3 (ours) 851.6±98.60 1.02±0.34
PacDCGAN4 (ours) 896.0±72.83 0.82±0.25

Table 4.4: Modes covered and KL divergence for unrolled GANs as compared to
PacDCGANs for various unrolling parameters, discriminator sizes, and the degree of
packing.
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CHAPTER 5: THEORETICAL ANALYSES OF PACGAN

In this chapter, we propose a formal and natural mathematical definition of mode collapse,

which abstracts away domain-specific details (e.g. images vs. time series). For a target

distribution P and a generator distributionQ, this definition describes mode collapse through

a two-dimensional representation of the pair (P,Q) as a region.

Mode collapse is a phenomenon commonly reported in the GAN literature [32, 15, 39, 47,

38], which can refer to two distinct concepts: (i) the generative model loses some modes that

are present in the samples of the target distribution. For example, despite being trained on a

dataset of animal pictures that includes lizards, the model never generates images of lizards.

(ii) Two distant points in the code vector Z are mapped to the same or similar points in the

sample space X. For instance, two distant latent vectors z1 and z2 map to the same picture

of a lizard [32]. Although these phenomena are different, and either one can occur without

the other, they are generally not explicitly distinguished in the literature, and it has been

suggested that the latter may cause the former [32]. In this work, we focus on the former

notion, as it does not depend on how the generator maps a code vector Z to the sample X,

and only focuses on the quality of the samples generated. In other words, we assume here

that two generative models with the same marginal distribution over the generated samples

should not be treated differently based on how random code vectors are mapped to the data

sample space. The second notion of mode collapse would differentiate two such architectures,

and is beyond the scope of this work. The proposed region representation relies purely on

the properties of the generated samples, and not on the generator’s mapping between the

latent and sample spaces.

We analyze how the proposed idea of packing changes the training of the generator. We

view the discriminator’s role as providing a surrogate for a desired loss to be minimized—

surrogate in the sense that the actual desired losses, such as Jensen-Shannon divergence or

total variation distances, cannot be computed exactly and need to be estimated. Consider

the standard GAN discriminator with a cross-entropy loss:

min
G

max
D

EX∼P [log(D(X))]− EG(Z)∼Q[log(1−D(G(Z)))]︸ ︷︷ ︸
' DKL

(
P‖P+Q

2

)
+DKL

(
Q‖P+Q

2

) , (5.1)

where the maximization is over the family of discriminators (or the discriminator weights, if

the family is a neural network of a fixed architecture), the minimization is over the family

of generators, and X is drawn from the distribution P of the real data, Z is drawn from
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the distribution of the code vector, typically a low-dimensional Gaussian, and we denote the

resulting generator distribution as G(Z) ∼ Q. The role of the discriminator under this GAN

scenario is to provide the generator with an approximation (or a surrogate) of a loss, which

in the case of cross entropy loss turns out to be the Jensen-Shannon divergence, defined as

DKL(P‖(P +Q)/2) +DKL(Q‖(P +Q)/2), where DKL(·) is the Kullback-Leibler divergence.

This follows from the fact that, if we search for the maximizing discriminator over the space of

all functions, the maximizer turns out to be D(X) = P (X)/(P (X) +Q(X)) [3]. In practice,

we search over some parametric family of discriminators, and we can only compute sample

average of the losses. This provides an approximation of the Jensen-Shannon divergence

between P and Q. The outer minimization over the generator tries to generate samples such

that they are close to the real data in this (approximate) Jensen-Shannon divergence, which

is one measure of how close the true distribution P and the generator distribution Q are.

In this Chapter, we show a fundamental connection between the principle of packing

and mode collapse in GAN. We provide a complete understanding of how packing changes

the loss as seen by the generator, by focusing on (as we did to derive the Jensen-Shnnon

divergence above) (a) the optimal discriminator over a family of all measurable functions;

(b) the population expectation; and (c) the 0-1 loss function of the form:

max
D

EX∼P [I(D(X))] + EG(Z)∼Q[1− I(D(G(Z)))]

subject to D(X) ∈ {0, 1} .

The first assumption allows us to bypass the specific architecture of the discriminator used,

which is common when analyzing neural network based discriminators (e.g. [48]). The second

assumption can be potentially relaxed and the standard finite sample analysis can be applied

to provide bounds similar to those in our main results in Theorems 5.1, 5.2, and 5.3. The last

assumption gives a loss of the total variation distance dTV(P,Q) , supS⊆X{P (S) − Q(S)}
over the domain X . This follows from the fact that (e.g. [32]),

sup
D

{
EX∼P [I(D(X))] + EG(Z)∼Q[1− I(D(G(Z)))]

}
= sup

S

{
P (S) + 1−Q(S)

}
= 1 + dTV(P,Q) .

This discriminator provides (an approximation of) the total variation distance, and the

generator tries to minimize the total variation distance

dTV(P,Q) .
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The reason we make this assumption is primarily for clarity and analytical tractability:

total variation distance highlights the effect of packing in a way that is cleaner and easier

to understand than if we were to analyze Jensen-Shannon divergence. We discuss this point

in more detail in Chapter 5.2. In sum, these three assumptions allow us to focus purely on

the impact of packing on the mode collapse of resulting discriminator.

We want to understand how this 0-1 loss, as provided by such a discriminator, changes with

the degree of packing m. As packed discriminators see m packed samples, each drawn i.i.d.

from one joint class (i.e. either real or generated), we can consider these packed samples as a

single sample that is drawn from the product distribution: Pm for real and Qm for generated.

The resulting loss provided by the packed discriminator is therefore dTV(Pm, Qm).

We first provide a formal mathematical definition of mode collapse in Chapter 5.1, which

leads to a two-dimensional representation of any pair of distributions (P,Q) as a mode-

collapse region. This region representation provides not only conceptual clarity regarding

mode collapse, but also proof techniques that are essential to proving our main results on the

fundamental connections between the strength of mode collapse in a pair (P,Q) and the loss

dTV(Pm, Qm) seen by a packed discriminator (Chapter 5.2). The proofs of these results are

provided in Chapter 6. In Chapter 5.2.1, we show that the proposed mode collapse region is

equivalent to what is known as the hypothesis testing region for type I and type II errors in

binary hypothesis testing. This allows us to use strong mathematical techniques from binary

hypothesis testing including the data processing inequality and the reverse data processing

inequalities.

5.1 MATHEMATICAL DEFINITION OF MODE COLLAPSE AS A
TWO-DIMENSIONAL REGION

Although no formal and agreed-upon definition of mode collapse exists in the GAN lit-

erature, mode collapse is declared for a multimodal target distribution P if the generator

Q assigns a significantly smaller probability density in the regions surrounding a particular

subset of modes. One major challenge in addressing such a mode collapse is that it involves

the geometry of P : there is no standard partitioning of the domain respecting the modu-

lar topology of P , and even heuristic partitions are typically computationally intractable in

high dimensions. Hence, we drop this geometric constraint, and introduce a purely analytical

definition.

Definition 5.1. A target distribution P and a generator Q exhibit (ε, δ)-mode collapse for

some 0 ≤ ε < δ ≤ 1 if there exists a set S ⊆ X such that P (S) ≥ δ and Q(S) ≤ ε.
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This definition provides a formal measure of mode collapse for a target P and a generator

Q; intuitively, larger δ and smaller ε indicate more severe mode collapse. That is, if a large

portion of the target P (S) ≥ δ in some set S in the domain X is missing in the generator

Q(S) ≤ ε, then we declare (ε, δ)-mode collapse.

A key observation is that two pairs of distributions can have the same total variation

distance while exhibiting very different mode collapse patterns. To see this, consider a toy

example in Figure 5.1, with a uniform target distribution P = U([0, 1]) over [0, 1]. Now

consider all generators at a fixed total variation distance of 0.2 from P . We compare the

intensity of mode collapse for two extreme cases of such generators. Q1 = U([0.2, 1]) is

uniform over [0.2, 1] and Q2 = 0.6U([0, 0.5]) + 1.4U([0.5, 1]) is a mixture of two uniform

distributions, as shown in Figure 5.1. They are designed to have the same total variations

distance, i.e. dTV(P,Q1) = dTV(P,Q2) = 0.2, but Q1 exhibits an extreme mode collapse as

the whole probability mass in [0, 0.2] is lost, whereas Q2 captures a more balanced deviation

from P .

Definition 5.1 captures the fact that Q1 has more mode collapse than Q2, since the pair

(P,Q1) exhibits (ε = 0, δ = 0.2)-mode collapse, whereas the pair (P,Q2) exhibits only (ε =

0.12, δ = 0.2)-mode collapse, for the same value of δ = 0.2. However, the appropriate way to

precisely represent mode collapse (as we define it) is to visualize it through a two-dimensional

region we call the mode collapse region. For a given pair (P,Q), the corresponding mode

collapse region R(P,Q) is defined as the convex hull of the region of points (ε, δ) such that

(P,Q) exhibit (ε, δ)-mode collapse, as shown in Figure 5.1.

R(P,Q) , conv
( {

(ε, δ)
∣∣ δ > ε and (P,Q) has (ε, δ)-mode collapse

} )
, (5.2)

where conv(·) denotes the convex hull. This definition of region is fundamental in the sense

that it is a sufficient statistic that captures the relations between P and Q. This assertion

is made precise in Chapter 5.2.1 by making a strong connection between the mode collapse

region and the type I and type II errors in binary hypothesis testing. That connection

allows us to prove a sharp result on how the loss, as seen by the discriminator, evolves under

PacGAN in Chapter 6. For now, we can use this region representation of a given target-

generator pair to detect the strength of mode collapse occurring for a given generator.

Typically, we are interested in the presence of mode collapse with a small ε and a much

larger δ; this corresponds to a sharply-increasing slope near the origin (0, 0) in the mode

collapse region. For example, the middle panel in Figure 5.1 depicts the mode collapse region

(shaded in gray) for a pair of distributions (P,Q1) that exhibit significant mode collapse;

notice the sharply-increasing slope at (0, 0). The right panel in Figure 5.1 illustrates the
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same region for a pair of distributions (P,Q2) that do not exhibit strong mode collapse,

resulting a region with a much gentler slope at (0, 0).
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Figure 5.1: A formal definition of (ε, δ)-mode collapse and its accompanying region
representation captures the intensity of mode collapse for generators Q1 with mode collapse
and Q2 which does not have mode collapse, for a toy example distributions P , Q1, and Q2

shown on the left. The region of (ε, δ)-mode collapse that is achievable is shown in grey.

Similarly, if the generator assigns a large probability mass compared to the target distri-

bution on a subset, we call it a mode augmentation, and give a formal definition below.

Definition 5.2. A pair of a target distribution P and a generator Q has an (ε, δ)-mode

augmentation for some 0 ≤ ε < δ ≤ 1 if there exists a set S ⊆ X such that Q(S) ≥ δ and

P (S) ≤ ε.

Note that we distinguish mode collapse and augmentation strictly here, for analytical

purposes. In GAN literature, both collapse and augmentation contribute to the observed

“mode collapse” phenomenon, which loosely refers to the lack of diversity in the generated

samples.

5.2 EVOLUTION OF THE REGION UNDER PRODUCT DISTRIBUTIONS

The toy example generators Q1 and Q2 from Figure 5.1 could not be distinguished using

only their total variation distances from P , despite exhibiting very different mode collapse

properties. This suggests that the original GAN (with 0-1 loss) may be vulnerable to mode

collapse, as it has no way to distinguish distributions in which mode collapse does or does

not happen. We prove in Theorem 5.2 that a discriminator that packs multiple samples

together can distinguish mode-collapsing generators. Intuitively, m packed samples are

effectively drawn from the product distributions Pm and Qm. We show in this section that
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there is a fundamental connection between the strength of mode collapse of (P,Q) and the

loss as seen by the packed discriminator dTV(Pm, Qm).

Intuition via toy examples. Concretely, consider the example from the previous section

and recall that Pm denote the product distribution resulting from packing together m inde-

pendent samples from P . Figure 5.2 illustrates how the mode collapse region evolves over

m, the degree of packing. This evolution highlights a key insight: the region R(Pm, Qm
1 )

of a mode-collapsing generator expands much faster as m increases compared to the region

R(Pm, Qm
2 ) of a non-mode-collapsing generator. This implies that the total variation dis-

tance of (P,Q1) increases more rapidly as we pack more samples, compared to (P,Q2). This

follows from the fact that the total variation distance between P and the generator can be

determined directly from the upper boundary of the mode collapse region (see Chapter 5.2.1

for the precise relation). In particular, a larger mode collapse region implies a larger total

variation distance between P and the generator. The total variation distances dTV(P,Qm
1 )

and dTV(P,Qm
2 ), which were explicitly chosen to be equal at m = 1 in our example, grow

farther apart with increasing m, as illustrated in the right figure below. This implies that if

we use a packed discriminator, the mode-collapsing generator Q1 will be heavily penalized

for having a larger loss, compared to the non-mode-collapsing Q2.
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Figure 5.2: Evolution of the mode collapse region over the degree of packing m for the two
toy examples from Figure 5.1. The region of the mode-collapsing generator Q1 expands
faster than the non-mode-collapsing generator Q2 when discriminator inputs are packed (at
m = 1 these examples have the same TV distances). This causes a discriminator to
penalize mode collapse as desired.

Evolution of total variation distances. In order to generalize the intuition from the

above toy examples, we first analyze how the total variation evolves for the set of all pairs

(P,Q) that have the same total variation distance τ when unpacked (i.e., when m = 1). The

solutions to the following optimization problems give the desired upper and lower bounds,
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respectively, on total variation distance for any distribution pair in this set with a packing

degree of m:

min
P,Q

dTV(Pm, Qm) max
P,Q

dTV(Pm, Qm) (5.3)

subject to dTV(P,Q) = τ subject to dTV(P,Q) = τ ,

where the maximization and minimization are over all probability measures P and Q. We

give the exact solution in Theorem 5.1, which is illustrated pictorially in Figure 5.3 (left).

Theorem 5.1. For all 0 ≤ τ ≤ 1 and a positive integer m, the solution to the maximization

in (5.3) is 1− (1− τ)m, and the solution to the minimization in (5.3) is

L(τ,m) , min
0≤α≤1−τ

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (5.4)

where Pinner(α)m and Qinner(α, τ)m are the m-th order product distributions of binary random

variables distributed as

Pinner(α) =
[
1− α, α

]
, (5.5)

Qinner(α, τ) =
[
1− α− τ, α + τ

]
. (5.6)

Although this is a simple statement that can be proved in several different ways, we

introduce in Chapter 6 a novel geometric proof technique that critically relies on the proposed

mode collapse region. This particular technique will allow us to generalize the proof to more

complex problems involving mode collapse in Theorem 5.2, for which other techniques do

not generalize. Note that the claim in Theorem 5.1 has nothing to do with mode collapse.

Still, we use the mode collapse region definition purely as a proof technique for this claim.

For any given value of τ andm, the bounds in Theorem 5.1 are easy to evaluate numerically,

as shown below in the left panel. Within this achievable range, some pairs (P,Q) have rapidly

increasing total variation, occupying the upper part of the region (shown in red, middle panel

of Figure 5.3), and some pairs (P,Q) have slowly increasing total variation, occupying the

lower part as shown in blue in the right panel in Figure 5.3. In particular, the evolution of

the mode-collapse region of a pair of m-th power distributions R(Pm, Qm) is fundamentally

connected to the strength of mode collapse in the original pair (P,Q). This means that

for a mode-collapsed pair (P,Q1), the mth-power distribution will exhibit a different total

variation distance evolution than a non-mode-collapsed pair (P,Q2). As such, these two pairs

can be distinguished by a packed discriminator. Making such a claim precise for a broad
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class of mode-collapsing and non-mode-collapsing generators is challenging, as it depends

on the target P and the generator Q, each of which can be a complex high dimensional

distribution, like natural images. The proposed region interpretation, endowed with the

hypothesis testing interpretation and the data processing inequalities that come with it, is

critical: it enables the abstraction of technical details and provides a simple and tight proof

based on geometric techniques on two-dimensional regions.
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Figure 5.3: The range of dTV(Pm, Qm) achievable by pairs with dTV(P,Q) = τ , for a choice
of τ = 0.11, defined by the solutions of the optimization (5.3) provided in Theorem 5.1 (left
panel). The range of dTV(Pm, Qm) achievable by those pairs that also have
(ε = 0.00, δ = 0.1)-mode collapse (middle panel). A similar range achievable by pairs of
distributions that do not have (ε = 0.07, δ = 0.1)-mode collapse or (ε = 0.07, δ = 0.1)-mode
augmentation (right panel). Pairs (P,Q) with strong mode collapse occupy the top region
(near the upper bound) and the pairs with weak mode collapse occupy the bottom region
(near the lower bound).

Evolution of total variation distances with mode collapse. We analyze how the total

variation evolves for the set of all pairs (P,Q) that have the same total variations distances

τ when unpacked, with m = 1, and have (ε, δ)-mode collapse for some 0 ≤ ε < δ ≤ 1.

The solution of the following optimization problem gives the desired range of total variation

distances:

min
P,Q

dTV(Pm, Qm) max
P,Q

dTV(Pm, Qm) (5.7)

subject to dTV(P,Q) = τ subject to dTV(P,Q) = τ

(P,Q) has (ε, δ)-mode collapse (P,Q) has (ε, δ)-mode collapse ,

where the maximization and minimization are over all probability measures P and Q, and

the mode collapse constraint is defined in Definition 5.1. (ε, δ)-mode collapsing pairs have

total variation at least δ− ε by definition, and when τ < δ− ε, the feasible set of the above
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optimization is empty. Otherwise, the next theorem establishes that mode-collapsing pairs

occupy the upper part of the total variation region; that is, total variation increases rapidly

as we pack more samples together (Figure 5.3, middle panel). This follows from the fact

that any pair (P,Q) with total variation distance τ ≥ δ − ε inherently exhibits (δ, ε) mode

collapse. One implication is that distribution pairs (P,Q) at the top of the total variation

evolution region are those with the strongest mode collapse. Another implication is that a

pair (P,Q) with strong mode collapse (i.e., with larger δ and smaller ε in the constraint) will

be penalized more under packing, and hence a generator minimizing an approximation of

dTV(Pm, Qm) will be unlikely to select a distribution that exhibits such strong mode collapse.

Theorem 5.2. For all 0 ≤ ε < δ ≤ 1 and a positive integer m, if 1 ≥ τ ≥ δ − ε then the

solution to the maximization in (5.7) is 1− (1− τ)m, and the solution to the minimization

in (5.7) is

L1(ε, δ, τ,m) , min
{

min
0≤α≤1− τδ

δ−ε

dTV

(
Pinner1(δ, α)m, Qinner1(ε, α, τ)m

)
,

min
1− τδ

δ−ε≤α≤1−τ
dTV

(
Pinner2(α)m, Qinner2(α, τ)m

)}
, (5.8)

where Pinner1(δ, α)m, Qinner1(ε, α, τ)m, Pinner2(α)m, and Qinner2(α, τ)m are the m-th order prod-

uct distributions of discrete random variables distributed as

Pinner1(δ, α) =
[
δ, 1− α− δ, α

]
, (5.9)

Qinner1(ε, α, τ) =
[
ε, 1− α− τ − ε, α + τ

]
, (5.10)

Pinner2(α) =
[
1− α, α

]
, (5.11)

Qinner2(α, τ) =
[
1− α− τ, α + τ

]
. (5.12)

If τ < δ − ε, then the optimization in (5.7) has no solution and the feasible set is an empty

set.

A proof of this theorem is provided in Chapter 6.1.1, which critically relies on the proposed

mode collapse region representation of the pair (P,Q), and the celebrated result by Blackwell

from [1]. The solutions in Theorem 5.2 can be numerically evaluated for any given choices

of (ε, δ, τ) as we show in Figure 5.4.

Analogous results to the above theorem can be shown for pairs (P,Q) that exhibit (ε, δ)

mode augmentation (as opposed to mode collapse). These results are omitted for brevity,

but the results and analysis are straightforward extensions of the proofs for mode collapse.
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This holds because total variation distance is a metric, and therefore symmetric.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

dTV(P
m, Qm)

(0.00, 0.1)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

(0.01, 0.1)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

(0.02, 0.1)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

dTV(P
m, Qm)

m

(0.03, 0.1)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

m

(0.04, 0.1)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  3  5  7  9  11

m

(0.05, 0.1)-mode collapse

Figure 5.4: The evolution of total variation distance over the packing degree m for mode
collapsing pairs is shown as a red band. The upper and lower boundaries of the red band is
defined by the optimization 5.7 and computed using Theorem 5.2. For a fixed
dTV(P,Q) = τ = 0.11 and (ε, δ = 0.1)-mode collapse, we show the evolution with different
choices of ε ∈ {0.00, 0.01, 0.02, 0.03, 0.04, 0.05}. The black solid lines show the
maximum/minimum total variation in the optimization problem (5.3) as a reference. The
family of pairs (P,Q) with stronger mode collapse (i.e. smaller ε in the constraint), occupy
a smaller region at the top with higher total variation under packing, and hence is more
penalized when training the generator.

Evolution of total variation distances without mode collapse. We next analyze how

the total variation evolves for the set of all pairs (P,Q) that have the same total variations

distances τ when unpacked, with m = 1, and do not have (ε, δ)-mode collapse for some

0 ≤ ε < δ ≤ 1. Because of the symmetry of the total variation distance, mode augmentation

in Definition 5.2 is equally damaging as mode collapse, when it comes to how fast total

variation distances evolve. Hence, we characterize this evolution for those family of pairs of

distributions that do not have either mode collapse or augmentation. The solution of the
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following optimization problem gives the desired range of total variation distances:

min
P,Q

dTV(Pm, Qm) max
P,Q

dTV(Pm, Qm) (5.13)

subject to dTV(P,Q) = τ subject to dTV(P,Q) = τ

(P,Q) does not have (ε, δ)-mode (P,Q) does not have (ε, δ)-mode

collapse or augmentation collapse or augmentation ,

where the maximization and minimization are over all probability measures P and Q, and

the mode collapse and augmentation constraints are defined in Definitions 5.1 and 5.2,

respectively.

It is not possible to have dTV(P,Q) > (δ − ε)/(δ + ε) and δ + ε ≤ 1 and satisfy the mode

collapse and mode augmentation constraints (see Chapter 6.1.2 for a proof). Similarly, it is

not possible to have dTV(P,Q) > (δ−ε)/(2−δ−ε) and δ+ε ≥ 1 and satisfy the constraints.

Hence, the feasible set is empty when τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2 − δ − ε)}. On

the other hand, when τ ≤ δ − ε, no pairs with total variation distance τ can have (ε, δ)-

mode collapse. In this case, the optimization reduces to the simpler one in (5.3) with no

mode collapse constraints. Non-trivial solution exists in the middle regime, i.e. δ − ε ≤ τ ≤
max{(δ− ε)/(δ+ ε), (δ− ε)/(2− δ− ε)}. The lower bound for this regime, given in equation

(5.17), is the same as the lower bound in (5.4), except it optimizes over a different range of α

values. For a wide range of parameters ε, δ, and τ , those lower bounds will be the same, and

even if they differ for some parameters, they differ slightly. This implies that the pairs (P,Q)

with weak mode collapse will occupy the bottom part of the evolution of the total variation

distances (see Figure 5.3 right panel), and also will be penalized less under packing. Hence

a generator minimizing (approximate) dTV(Pm, Qm) is likely to generate distributions with

weak mode collapse.

Theorem 5.3. For all 0 ≤ ε < δ ≤ 1 and a positive integer m, if 0 ≤ τ < δ − ε, then

the maximum and the minimum of (5.13) are the same as those of the optimization (5.3)

provided in Theorem 5.1.

If δ + ε ≤ 1 and δ − ε ≤ τ ≤ (δ − ε)/(δ + ε) then the solution to the maximization in

(5.13) is

U1(ε, δ, τ,m)

, max
α+β≤1−τ, ετ

δ−ε≤α,β
dTV

(
Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m

)
,

(5.14)
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where Pouter1(ε, δ, α, β, τ)m and Qouter1(ε, δ, α, β, τ)m are the m-th order product distributions

of discrete random variables distributed as

Pouter1(ε, δ, α, β, τ) =
[
α(δ−ε)−ετ

α−ε , α(α+τ−δ)
α−ε , 1− τ − α− β, β, 0

]
, and

(5.15)

Qouter1(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−δ)

β−ε , β(δ−ε)−ετ
β−ε

]
. (5.16)

The solution to the minimization in (5.13) is

L2(τ,m) , min
ετ
δ−ε≤α≤1−

δτ
δ−ε

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (5.17)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem 5.1.

If δ + ε > 1 and δ − ε ≤ τ ≤ (δ − ε)/(2− δ − ε) then the solution to the maximization in

(5.13) is

U2(ε, δ, τ,m)

, max
α+β≤1−τ, (1−δ)τ

δ−ε ≤α,β
dTV

(
Pouter2(ε, δ, α, β, τ)m, Qouter2(ε, δ, α, β, τ)m

)
,

(5.18)

where Pouter1(ε, δ, α, β, τ)m and Qouter1(ε, δ, α, β, τ)m are the m-th order product distributions

of discrete random variables distributed as

Pouter2(ε, δ, α, β, τ) =
[
α(δ−ε)−(1−δ)τ

α−(1−δ) , α(α+τ−(1−ε))
α−(1−δ) , 1− τ − α− β, β, 0

]
, and (5.19)

Qouter2(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−(1−ε))

β−(1−δ) , β(δ−ε)−(1−δ)τ
β−(1−δ)

]
.

(5.20)

The solution to the minimization in (5.13) is

L3(τ,m) , min
(1−δ)τ
δ−ε ≤α≤1−

(1−ε)τ
δ−ε

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (5.21)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem 5.1.

If τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2 − δ − ε)}, then the optimization in (5.13) has no

solution and the feasible set is an empty set.

A proof of this theorem is provided in Chapter 6.1.2, which also critically relies on the
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proposed mode collapse region representation of the pair (P,Q) and the celebrated result

by Blackwell from [1]. The solutions in Theorem 5.3 can be numerically evaluated for any

given choices of (ε, δ, τ) as we show in Figure 5.5.
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Figure 5.5: The evolution of total variation distance over the packing degree m for pairs
with no mode collapse is shown as a blue band, as defined by the optimization (5.13) and
computed using Theorem 5.3. For a fixed dTV(P,Q) = τ = 0.11 and the lack of
(ε, δ = 0.1)-mode collapse constraints, we show the evolution with different choices of
ε ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08}. The black solid lines show the maximum/minimum
total variation in the optimization (5.3) as a reference. The family of pairs (P,Q) with
weaker mode collapse (i.e. larger ε in the constraint), occupies a smaller region at the
bottom with smaller total variation under packing, and hence is less penalized when
training the generator.

The benefit of packing degree m. We give a practitioner the choice of the degree m of

packing, namely how many samples to jointly pack together. There is a natural trade-off

between computational complexity (which increases gracefully with m) and the additional

distinguishability, which we illustrate via an example. Consider the goal of differentiating
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two families of target-generator pairs, one with mode collapse and one without:

H0(ε, δ, τ) ,

{(P,Q)|(P,Q) without (ε, δ)-mode collapse or augmentation,

and dTV(P,Q) = τ} ,
H1(ε, δ, τ) , {(P,Q)|(P,Q) with (ε, δ)-mode collapse and dTV(P,Q) = τ} . (5.22)

As both families have the same total variation distances, they cannot be distinguished by

an unpacked discriminator. However, a packed discriminator that uses m samples jointly

can differentiate those two classes and even separate them entirely for a certain choices of

parameters, as illustrated in Figure 5.6. In red, we show the achievable dTV(Pm, Qm) for

H1(ε = 0.02, δ = 0.1, τ = 0.11) (the bounds in Theorem (5.2)). In blue is shown a similar

region for H0(ε = 0.05, δ = 0.1, τ = 0.11) (the bounds in Theorem (5.3)). Although the two

families are strictly separated (one with ε = 0.02 and another with ε = 0.05), a non-packed

discriminator cannot differentiate those two families as the total variation is the same for

both. However, as you pack mode samples, the packed discriminator becomes more powerful

in differentiating the two hypothesized families. For instance, for m ≥ 5, the total variation

distance completely separates the two families.

In general, the overlap between those regions depends on the specific choice of param-

eters, but the overall trend is universal: packing separates generators with mode collapse

from those without. Further, as the degree of packing increases, a packed discriminator

increasingly penalizes generators with mode collapse and rewards generators that exhibit

less mode collapse. Even if we consider complementary sets H0 and H1 with the same ε

and δ (such that the union covers the whole space of pairs of (P,Q) with the same total

variation distance), the least penalized pairs will be those with least mode collapse, which

fall within the blue region of the bottom right panel in Figure 5.5. This is consistent with

the empirical observations in Tables 4.1, 4.3, and 4.4, where increasing the degree of packing

captures more modes.

Jensen-Shannon divergence. In this theoretical analysis, we have focused on 0-1 loss,

as our current analysis technique gives exact solutions to the optimization problems (5.3),

(5.7), and (5.13) if the metric is total variation distance. This follows from the fact that we

can provide tight inner and outer regions to the family of mode collapse regions R(P,Q)

that have the same total variation distances as dTV(P,Q) as shown in Chapter 6.

In practice, 0-1 loss is never used, as it is not differentiable. The most popular choice of a

loss function is cross entropy loss, which gives a metric of Jensen-Shannon (JS) divergence,
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Figure 5.6: Evolution of achievable total variation distances dTV(Pm, Qm) over packing size
m for two families of the target-generator pairs H0(0.05, 0.1, 0.11) and H1(0.02, 0.1, 0.11).
The mode-collapsing H1 is penalized significantly by the discriminator (only with m > 1)
and the two families can be strictly separated with packing for m > 5.

as shown in the beginning of Chapter 5. However, the same proof techniques used to show

Theorems 5.2 and 5.3 give loose bounds on JS divergence. In particular, this gap prevents

us from sharply characterizing the full effect of packing degree m on the JS divergence of a

pair of distributions. Nonetheless, we find that empirically, packing seems to reduce mode

collapse even under a cross entropy loss. Hence, we leave it as a future research direction to

find solutions to the optimization problems (5.3), (5.7), and (5.13), when the metric is the

(more common) Jensen-Shannon divergence.

5.2.1 Operational interpretation of mode collapse via hypothesis testing region

So far, all the definitions and theoretical results have been explained without explicitly

using the mode collapse region. The main contribution of introducing the region defini-

tion is that it provides a new proof technique based on the geometric properties of these

two-dimensional regions. Concretely, we show that the proposed mode collapse region is

equivalent to a similar notion in binary hypothesis testing. This allows us to bring powerful

mathematical tools from this mature area in statistics and information theory—in particu-

lar, the data processing inequalities originating from the seminal work of Blackwell [1]. We

make this connection precise, which gives insights on how to interpret the mode collapse

region, and list the properties and techniques which dramatically simplify the proof, while
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providing the tight results in Chapter 6.

5.2.2 Equivalence between the mode collapse region and the hypothesis testing region

There is a simple one-to-one correspondence between mode collapse region as we define it

in Chapter 5.1 (e.g. Figure 5.1) and the hypothesis testing region studied in binary hypothesis

testing. In the classical testing context, there are two hypotheses, h = 0 or h = 1, and we

make observations via some stochastic experiment in which our observations depend on the

hypothesis. Let X denote this observation. One way to visualize such an experiment is

using a two-dimensional region defined by the corresponding type I and type II errors. This

was, for example, used to prove strong composition theorems in the context of differential

privacy in [31], and subsequently to identify the optimal differentially private mechanisms

under local privacy [29] and multi-party communications [30]. We refer to [31] for the precise

definition of the hypothesis testing region and its properties.

We can map this binary hypothesis testing setup directly to the GAN context. Suppose

the null hypothesis h = 0 denotes observations being drawn from the true distribution P ,

and the alternate hypothesis h = 1 denotes observations being drawn from the generated

distribution Q. Given a sample X from this experiment, suppose we make a decision on

whether the sample came from P or Q based on a rejection region Sreject, such that we

reject the null hypothesis if X ∈ Sreject. Type I error is when the null hypothesis is true

but rejected, which happens with P(X ∈ Sreject|h = 0), and type II error is when the null

hypothesis is false but accepted, which happens with P(X /∈ Sreject|h = 1). Sweeping through

the achievable pairs (P(X /∈ Sreject|h = 1),P(X ∈ Sreject|h = 0)) for all possible rejection

sets, this defines a two dimensional convex region that is called hypothesis testing region.

An example of hypothesis testing regions for the two toy examples (P,Q1) and (P,Q2) from

Figure 5.1 are shown below in Figure 5.7.

In defining the region, we allow stochastic decisions, such that if a point (x, y) and another

point (x′, y′) are achievable type II and type I errors, then any convex combination of those

points are also achievable by randomly choosing between those two rejection sets. Hence,

the resulting hypothesis testing region is always a convex set by definition. We also show

only the region below the 45-degree line passing through (1, 0) and (1, 0), as the other region

is symmetric and redundant. For a given pair (P,Q), there is a very simple relation between

its mode collapse region and hypothesis testing region.

Remark 5.1 (Equivalence). For a pair of target P and generator Q, the hypothesis testing

region is a mirror image of the mode collapse region with respect to a horizontal axis at
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Figure 5.7: The hypothesis testing region of (P,Q) (bottom row) is a mirror image of the
mode collapse region (top row). We omit the region above y = 1− x axis in the hypothesis
testing region as it is symmetric. The regions for mode collapsing toy example in Figure
5.1 (P,Q1) are shown on the left and the regions for the non mode collapsing example
(P,Q2) are shown on the right.

δ = 1/2.

For example, the hypothesis testing regions of the toy examples from Figure 5.1 are shown

below in Figure 5.7. This simple relation allows us to tap into the rich analysis tools known

for hypothesis testing regions. We list such properties of mode collapse regions derived from

this relation in the next Chapter. The proof of all the remarks follow from the equivalence

to binary hypothesis testing and corresponding existing results from [1] and [31].

5.2.3 Properties of the mode collapse region

Given the equivalence between the mode collapse region and the binary hypothesis testing

region, several important properties follow as corollaries. First, the mode collapse region

R(P,Q) is a convex set, by definition. Second, the hypothesis testing region is a sufficient
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statistic for the purpose of binary hypothesis testing from a pair of distributions (P,Q). This

implies, among other things, that all f -divergences can be computed from the region. In

particular, for the purpose of GAN with 0-1 loss, we can define total variation as a geometric

property of the region, which is crucial to proving our main results.

Remark 5.2 (Total variation distance). The total variation distance between P and Q is the

intersection between the vertical axis and the tangent line to the upper boundary of R(P,Q)

that has a slope of one, as shown in Figure 5.8.
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~w�dTV(P,Q2)

R(P,Q2)

ε

δ

slope = 1

Figure 5.8: Total variation distance is one among many properties of (P,Q2) that can be
directly read off of the region R(P,Q).

This follows from the equivalence of the mode collapse region (Remark 5.1) and the hy-

pothesis testing region. This geometric definition of total variation allows us to enumerate

over all pairs (P,Q) that have the same total variation τ in our proof, via enumerating over

all regions that touch the line that has a unit slope and a shift τ (see Figure 6.1).

The major strength of the region perspective, as originally studied by Blackwell [1], is in

providing a comparison of stochastic experiments. In our GAN context, consider comparing

two pairs of target distributions and generators (P,Q) and (P ′, Q′) as follows. First, a

hypothesis h is drawn, choosing whether to produce samples from the true distribution, in

which case we say h = 0, or to produce samples from the generator, in which case we say

h = 1. Conditioned on this hypothesis h, we use X to denote a random variable that is

drawn from the first pair (P,Q) such that fX|h(x|0) = P (x) and fX|h(x|1) = Q(x). Similarly,

we use X ′ to denote a random sample from the second pair, where fX′|h(x|0) = P ′(x) and

fX′|h(x|1) = Q′(x). Note that the conditional distributions are well-defined for both X and

X ′, but there is no coupling defined between them. We can without loss of generality assume

h to be independently drawn from the uniform distribution.

Definition 5.3. For a given coupling between X and X ′, we say X dominates X ′ if they

form a Markov chain h–X–X ′.
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The data processing inequality in the following remark shows that if we further process the

output samples from the pair (P,Q) then the further processed samples can only have less

mode collapse. Processing output of stochastic experiments has the effect of smoothing out

the distributions, and mode collapse, which corresponds to a peak in the pair of distributions,

are smoothed out in the processing down the Markov chain.

Remark 5.3 (Data processing inequality). The following data processing inequality holds

for the mode collapse region. For two coupled target-generator pairs (P,Q) and (P ′, Q′), if

X dominates another pair X ′, then

R(P ′, Q′) ⊆ R(P,Q) .

This is expected, and follows directly from the equivalence of the mode collapse region

(Remark 5.1) and the hypothesis testing region. What is perhaps surprising is that the

reverse is also true.

Remark 5.4 (Reverse data processing inequality). The following reverse data processing

inequality holds for the mode collapse region. For two paired marginal distributions X and

X ′, if

R(P ′, Q′) ⊆ R(P,Q) ,

then there exists a coupling of the random samples from X and X ′ such that X dominates

X ′, i.e. they form a Markov chain h–X–X ′.

This follows from the equivalence between the mode collapse region and the hypothesis

testing region (Remark 5.1) and Blackwell’s celebrated result on comparisons of stochastic

experiments [1]. This region interpretation, and the accompanying (reverse) data processing

inequality, abstracts away all the details about P and Q, enabling us to use geometric

analysis tools to prove our results. In proving our main results, we will mainly rely on the

following remark, which is the corollary of the Remarks 5.3 and 5.4.

Remark 5.5. For all positive integers m, the dominance of regions are preserved under

taking m-th order product distributions, i.e. if R(P ′, Q′) ⊆ R(P,Q), then R((P ′)m, (Q′)m) ⊆
R(Pm, Qm).
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CHAPTER 6: PROOFS OF THE MAIN RESULTS

In this Chapter, we showcase how the region interpretation provides a new proof technique

that is simple and tight. This transforms the measure-theoretic problem into a geometric

one in a simple 2D compact plane, facilitating the proof of otherwise-challenging results.

6.1 PROOF OF THE MAIN THEOREM

Note that although the original optimization (5.3) has nothing to do with mode collapse,

we use the mode collapse region to represent the pairs (P,Q) to be optimized over. This

allows us to use simple geometric techniques to enumerate over all possible pairs (P,Q) that

have the same total variation distance τ .
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ε

δ

Figure 6.1: For any pair (P,Q) with total variation distance τ , there exists an α such that
the corresponding region R(P,Q) is sandwiched between Rinner(α, τ) and Router(τ).

By Remark 5.2, all pairs (P,Q) that have total variation τ must have a mode collapse

region R(P,Q) that is tangent to the blue line in Figure 6.1. Let us denote a point where

R(P,Q) meets the blue line by the point (1 − α − τ, 1 − α) in the 2D plane, parametrized

by α ∈ [0, 1 − τ ]. Then, for any such (P,Q), we can sandwich the region R(P,Q) between

two regions Rinner and Router:

Rinner(α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (6.1)

which are illustrated in Figure 6.2. Now, we wish to understand how these inner and outer

regions evolve under product distributions. This endeavor is complicated by the fact that
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there can be infinite pairs of distributions that have the same region R(P,Q). However,

note that if two pairs of distributions have the same region R(P,Q) = R(P ′, Q′), then their

product distributions will also have the same region R(Pm, Qm) = R((P ′)m, (Q′)m). As

such, we can focus on the simplest, canonical pair of distributions, whose support set has

the minimum cardinality over all pairs of distributions with region R(P,Q).

For a given α, we denote the pairs of canonical distributions achieving these exact inner

and outer regions as in Figure 6.2: let (Pinner(α), Qinner(α, τ)) be as defined in (5.5) and

(5.6), and let (Pouter(τ), Qouter(τ)) be defined as below. Since the outer region has three

sides (except for the universal 45-degree line), we only need alphabet size of three to find the

canonical probability distributions corresponding to the outer region. By the same reasoning,

the inner region requires only a binary alphabet. Precise probability mass functions on these

discrete alphabets can be found easily from the shape of the regions and the equivalence to

the hypothesis testing region explained in Chapter 5.2.1.
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Figure 6.2: Canonical pairs of distributions corresponding to Rinner(α, τ) and Router(τ).

By the preservation of dominance under product distributions in Remark 5.5, it follows

from the dominance in (6.1) that for any (P,Q) there exists an α such that

R(Pinner(α)m, Qinner(α, τ)m) ⊆ R(Pm, Qm) ⊆
R(Pouter(τ)m, Qouter(τ)m) .

(6.2)

Due to the data processing inequality of mode collapse region in Remark 5.4, it follows that

dominance of region implies dominance of total variation distances:

min0≤α≤1−τ dTV(Pinner(α)m, Qinner(α, τ)m)

≤ dTV(Pm, Qm) ≤ dTV(Pouter(τ)m, Qouter(τ)m) . (6.3)
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The RHS and LHS of the above inequalities can be completely characterized by taking the

m-th power of those canonical pairs of distributions. For the upper bound, all mass except

for (1−τ)m is nonzero only on one of the pairs, which gives dTV(Pm
outer, Q

m
outer) = 1−(1−τ)m.

For the lower bound, writing out the total variation gives L(τ,m) in (5.4). This finishes the

proof of Theorem 5.1.

6.1.1 Proof of Theorem 5.2

In optimization (5.7), we consider only those pairs with (ε, δ)-mode collapse. It is simple

to see that the outer bound does not change. We only need a new inner bound. Let us

denote a point where R(P,Q) meets the blue line by the point (1− α− τ, 1− α) in the 2D

plane, parametrized by α ∈ [0, 1− τ ]. We consider the case where α < 1− (τδ/(δ − ε)) for

now, and treat the case when α is larger separately, as the analyses are similar but require a

different canonical pair of distributions (P,Q) for the inner bound. The additional constraint

that (P,Q) has (ε, δ)-mode collapse translates into a geometric constraint that we need to

consider all regions R(P,Q) that include the orange solid circle at point (ε, δ). Then, for any

such (P,Q), we can sandwich the region R(P,Q) between two regions Rinner1 and Router:

Rinner1(ε, δ, α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (6.4)
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 0.5

 1

 0  0.5  1

↵ ⌧

R(P, Q)
Router(⌧)

(", �)

Rinner1(", �, ↵, ⌧)

ε

δ

Figure 6.3: For any pair (P,Q) with (ε, δ)-mode collapse, the corresponding region R(P,Q)
is sandwiched between Rinner1(ε, δ, α, τ) and Router(τ).

Let

(Pinner1(δ, α), Qinner1(ε, α, τ))
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defined in (5.9) and (5.10), and

(Pouter(τ), Qouter(τ))

defined in Chapter 6.1 denote the pairs of canonical distributions achieving the inner and

outer regions exactly as shown in Figure 6.4. By the preservation of dominance under
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Figure 6.4: Canonical pairs of distributions corresponding to Rinner(ε, δ, τ, α) and Router(τ).

product distributions in Remark 5.5, it follows from the dominance in (6.4) that for any

(P,Q) there exists an α such that

R(Pinner1(δ, α)m, Qinner1(ε, δ, α, τ)m) ⊆ R(Pm, Qm)

⊆ R(Pouter(τ)m, Qouter(τ)m) . (6.5)

Due to the data processing inequality of mode collapse region in Remark 5.4, it follows that

dominance of region implies dominance of total variation distances:

min
0≤α≤1− τδ

δ−ε

dTV(Pinner1(δ, α)m, Qinner1(ε, δ, α, τ)m) ≤ dTV(Pm, Qm) ≤

dTV(Pouter(τ)m, Qouter(τ)m) . (6.6)

The RHS and LHS of the above inequalities can be completely characterized by taking the

m-th power of those canonical pairs of distributions. For the upper bound, all mass except

for (1−τ)m is nonzero only on one of the pairs, which gives dTV(Pm
outer, Q

m
outer) = 1−(1−τ)m.

For the lower bound, writing out the total variation gives L1(ε, δ, τ,m) in (5.8).

For α > 1−(τδ/(δ−ε)), we need to consider a different class of canonical distributions for

the inner region, shown below. The inner region Rinner2(α, τ) and corresponding canonical

distributions Pinner2(α) and Qinner2(α, τ) defined in (5.11) and (5.12) are shown below. We
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take the smaller one between the total variation distance resulting from these two cases.

Note that α ≤ 1− τ by definition. This finishes the proof of Theorem 5.2.
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Figure 6.5: When α > 1− (τδ/(δ − ε)), this shows a canonical pair of distributions
corresponding to Rinner(ε, δ, τ, α) for the mode-collapsing scenario H1(ε, δ, τ).

6.1.2 Proof of Theorem 5.3

When τ < δ−ε, all pairs (P,Q) with dTV(P,Q) = τ cannot have (ε, δ)-mode collapse, and

the optimization of (5.13) reduces to that of (5.3) without any mode collapse constraints.

When δ+ε ≤ 1 and τ > (δ−ε)/(δ+ε), no convex region R(P,Q) can touch the 45-degree

line at τ as shown below, and the feasible set is empty. This follows from the fact that a

triangle region passing through both (ε, δ) and (1−δ, 1−ε) will have a total variation distance

of (δ−ε)/(δ+ε). Note that no (ε, δ) mode augmentation constraint translates into the region

not including the point (1−δ, 1−ε). We can see easily from Figure 6.6 that any total variation

beyond that will require violating either the no-mode-collapse constraint or the no-mode-

augmentation constraint. Similarly, when δ+ ε > 1 and τ > (δ− ε)/(2− δ− ε), the feasible

set is also empty. These two can be unified as τ > max{(δ− ε)/(δ+ ε), (δ− ε)/(2− δ− ε)}.
Suppose δ+ε ≤ 1, and consider the intermediate regime when δ−ε ≤ τ ≤ (δ−ε)/(δ+ε). In

optimization (5.13), we consider only those pairs with no (ε, δ)-mode collapse or (ε, δ)-mode

augmentation. It is simple to see that the inner bound does not change from optimization in

(5.3). Let us denote a point where R(P,Q) meets the blue line by the point (1−α′−τ, 1−α′)
in the 2D plane, parametrized by α′ ∈ [0, 1 − τ ]. The R(α′, τ) defined in Figure 6.2 works

in this case also. We only need a new outer bound.

We construct an outer bound region, according to the following rule. We fit a hexagon

where one edge is the 45-degree line passing through the origin, one edge is the vertical axis,

one edge is the horizontal line passing through (1, 1), one edge is the 45-degree line with shift
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Figure 6.6: When δ + ε ≤ 1 and τ = (δ − ε)/(δ + ε) (i.e. (1− τ)/2 : (1 + τ)/2 = ε : δ), a
triangle mode collapse region that touches both points (ε, δ) and (1− δ, 1− ε) at two of its
edges also touches the 45-degree line with a τ shift at a vertex (left). When δ + ε > 1, the
same happens when τ = (δ − ε)/(2− δ − ε) (i.e. (1− τ)/2 : (1 + τ)/2 = (1− δ) : (1− ε)).
Hence, if τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}, then the triangle region that does
not include both orange points cannot touch the blue 45-degree line.

τ shown in blue in Figure 6.7, and the remaining two edges include the two orange points,

respectively, at (ε, δ) and (1− δ, 1− ε). For any R(P,Q) satisfying the constraints in (5.13),

there exists at least one such hexagon that includes R(P,Q). We parametrize the hexagon

by α and β, where (α, τ + α) denotes the left-most point where the hexagon meets the blue

line, and (1− τ − β, 1− β) denotes the right-most point where the hexagon meets the blue

line.

The additional constraint that (P,Q) has no (ε, δ)-mode collapse or (ε, δ)-mode augmen-

tation translates into a geometric constraint that we need to consider all regions R(P,Q)

that does not include the orange solid circle at point (ε, δ) and (1− δ, 1− ε). Then, for any

such (P,Q), we can sandwich the region R(P,Q) between two regions Rinner and Router1:

Rinner(α
′, τ) ⊆ R(P,Q) ⊆ Routrer1(ε, δ, α, β, τ) , (6.7)

where R(α, τ) is defined as in Figure 6.2.

Let

(Pinner(α
′), Qinner(α

′, τ))

defined in (5.5) and (5.6), and

(Pouter1(ε, δ, α, β, τ), Qouter1(ε, δ, α, β, τ))
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Figure 6.7: For any pair (P,Q) with no (ε, δ)-mode collapse or no (ε, δ)-mode
augmentation, the corresponding region R(P,Q) is sandwiched between Rinner(α

′, τ) and
Router1(ε, δ, α, β, τ) (left). A canonical pair of distributions corresponding to
Router1(ε, δ, α, β, τ) (middle and right).

denote the pairs of canonical distributions achieving the inner and outer regions exactly as

shown in Figure 6.7.

By the preservation of dominance under product distributions in Remark 5.5, it follows

from the dominance in (6.7) that for any (P,Q) there exist α′, α, and β such that

R(Pinner(α
′)m, Qinner(α

′, τ)m) ⊆ R(Pm, Qm) ⊆
R(Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m) . (6.8)

Due to the data processing inequality of mode collapse region in Remark 5.4, it follows that

dominance of region implies dominance of total variation distances:

min
ετ
δ−ε≤α′≤1−

τδ
δ−ε

dTV(Pinner(α
′)m, Qinner(α

′, τ)m) ≤ dTV(Pm, Qm)

≤ max
α,β≥ ετ

δ−ε ,α+β≤1−τ
dTV(Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m) . (6.9)

The RHS and LHS of the above inequalities can be completely characterized by taking the

m-th power of those canonical pairs of distributions, and then taking the respective minimum

over α′ and maximum over α and β. For the upper bound, this gives U1(ε, δ, τ,m) in (5.14),

and for the lower bound this gives L2(τ,m) in (5.17).

Now, suppose δ + ε > 1, and consider the intermediate regime when δ − ε ≤ τ ≤ (δ −
ε)/(2− δ − ε). We have a different outer bound Router2(ε, δ, α, δ, τ) as the role of (ε, δ) and
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(1− δ, 1− ε) have switched. A similar analysis gives

dTV(Pm, Qm)

≤ max
α,β≥ (1−δ)τ

δ−ε ,α+β≤1−τ
dTV(Pouter2(ε, δ, α, β, τ)m, Qouter2(ε, δ, α, β, τ)m) , (6.10)

where the canonical distributions are shown in Figure 6.8 and defined in (5.19) and (5.20).

This gives U2(ε, δ, τ,m) in (5.18). For the lower bound we only need to change the range of

α we minimize over, which gives L3(τ,m) in (5.21).
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Figure 6.8: A canonical pair of distributions corresponding to Router2(ε, δ, α, β, τ).
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