51 research outputs found

    A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation.

    Get PDF
    International audienceAIMS: The loss of the inhibitory receptor CD31 on peripheral T lymphocytes is associated with the incidence of atherosclerotic complications such as abdominal aortic aneurysms (AAA) in patients and plaque thrombosis in mice. However, we have recently discovered that a small fragment of extracellular CD31 remains expressed on the surface of the apparently 'CD31-negative' T-cells and that it is possible to restore the CD31-mediated T-cell inhibition in vivo by using a synthetic CD31-derived peptide. Here, we wanted to evaluate the therapeutic potential of the peptide in an experimental model of accelerated atherosclerosis and AAA formation. METHODS AND RESULTS: The effect of the murine CD31-derived peptide (aa 551-574, 1.5 mg/kg/day, sc) was evaluated on the extent of atherosclerotic plaques and the incidence of AAA in 28-week-old apolipoprotein E knockout mice (male, n ≄ 8/group) submitted to chronic angiotensin II infusion. The therapeutic mechanisms of the peptide were assessed by evaluating its effect on immune cell functions in vivo and in vitro. The prevalence of angiotensin II-induced AAA correlated with the loss of extracellular CD31 on T-cells. CD31 peptide treatment reduced both aneurysm formation and plaque size (P < 0.05 vs. control). Protection was associated with reduced perivascular leucocyte infiltration and T-cell activation in vivo. Functional in vitro studies showed that the peptide is able to suppress both T-cell and macrophage activation. CONCLUSION: CD31 peptides could represent a new class of drugs intended to prevent the inflammatory cell processes, such as those underlying progression of atherosclerosis and development of AAA

    Erythrocyte Efferocytosis by the Arterial Wall Promotes Oxidation in Early-Stage Atheroma in Humans

    Get PDF
    BackgroundSince red blood cells (RBCs) are the predominant cellular blood component interacting with the arterial wall, we explored the role of RBCs efferocytosis by vascular smooth muscle cells (vSMCs) in the initiation of human atheroma.Methods and resultsThe comparison of human healthy aortas with aortic fatty streaks or fibroatheromas revealed that RBC angiophagy is implicated from the earliest stages of atherogenesis, as documented by the concomitant detection of redox-active iron, hemoglobin, glycophorin A, and ceroids. RBCs infiltration in the arterial wall was associated with local lipid and protein oxidation, as well as vascular response (expression of heme oxygenase-1 and of genes related to iron metabolism as well as those encoding for phagocytosis). These effects were recapitulated in vitro when vSMCs were co-cultured with phosphatidyl-exposing senescent (s) RBCs but not with fresh RBCs. VSMCs engulfing sRBC increased their intracellular iron content, accumulated hemoglobin, lipids, and activated their phagolysosomes. Strikingly, injections of sRBCs into rats promoted iron accumulation in the aortic wall. In rabbits, hypercholesterolemia increased circulating senescent RBCs and induced the subendothelial accumulation of iron-rich phagocytic foam cells. RBCs bring cholesterol and iron/heme into the vascular wall and interact with vSMCs that phagocytize them.ConclusionThis study presents a previously unforeseen mechanism of plaque formation that implicates intimal RBC infiltration as one of the initial triggers for foam cell formation and intimal oxidation. Pathogenic effects exerted by several metabolic and hemodynamic factors may rely on their effect on RBC biology, thereby impacting how RBCs interact with the vascular wall

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    An Open Resource for Non-human Primate Imaging.

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    A CD31-Derived Peptide Prevents the Development of Antibody-Mediated Lesions in a Rat Model of Aortic Allograft

    No full text
    International audienceBackground: Antibody-mediated rejection (AMR) is a major cause of graft loss. The development of donor-specific antibodies (DSAs) directed against the allogeneic HLA molecules expressed by the graft also leads to accelerated arteriosclerosis. CD31 is a protein expressed on endothelial and immune cells, ensuring homeostasis at this interface. When strong immune stimulation occurs, the regulatory function of CD31 is lost owing to cleavage of its extracellular portion. P8RI, a synthetic peptide that binds to the ectodomain of CD31, is able to restore the CD31 immunomodulatory function. In this study, we hypothesized that CD31 could represent an attractive molecular target in AMR and investigated whether P8RI could prevent the development of vascular antibody-mediated lesions. Materials and methods: A rat model of orthotopic aortic allograft was used, and P8RI was administered for 28 days. Circulating DSAs were quantified to assess the alloimmune humoral response, and histologic and immunohistochemical analyses of aortic allografts were performed to estimate antibody-mediated lesions in the allograft. Results: Aorta-allografted rats receiving P8RI developed fewer DSAs than control animals (mean fluorescence intensity 344 vs 741). The density of nuclei in the media (3.4 x 10-5 vs 2.2 x 10-5 nuclei/px2) and media surface area (2.33 x 106 vs 2.02 x 106 px2) were higher in animals treated with P8RI than in control animals. Conclusions: These data support a therapeutic potential for molecules able to restore the CD31 signaling to fight AMR. P8RI, an agonist synthetic peptide targeting CD31, might prevent DSA production and have a beneficial effect in limiting arterial antibody-mediated lesions. CD31 agonists may become therapeutic tools to prevent and treat solid organ transplant arteriosclerosis

    Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn's disease affected mesentery

    No full text
    International audienceThe formation of tertiary lymphoid organs (TLOs) is orchestrated by the stromal cells of tissues chronically submitted to inflammatory stimuli, in order to uphold specific adaptive immune responses. We have recently shown that the smooth muscle cells of the arterial wall orchestrate the formation of the TLOs associated with atherosclerosis in response to the local release of TNF-α. Observational studies have recently documented the presence of structures resembling TLOs the creeping fat that develops in the mesentery of patients with Crohn's disease (CD), an inflammatory condition combining a complex and as yet not elucidated infectious and autoimmune responses. We have performed a comprehensive analysis of the TLO structures in order to decipher the mechanism leading to their formation in the mesentery of CD patients, and assessed the effect of infectious and/or inflammatory inducers on the potential TLO-organizer functions of adipocytes. Quantitative analysis showed that both T and B memory cells, as well as plasma cells, are enriched in the CD-affected mesentery, as compared with tissue from control subjects. Immunohistochemistry revealed that these cells are concentrated within the creeping fat of CD patients, in the vicinity of transmural lesions; that T and B cells are compartmentalized in clearly distinct areas; that they are supplied by post-capillary high endothelial venules and drained by lymphatic vessels indicating that these nodules are fully mature TLOs. Organ culture showed that mesenteric tissue samples from CD patients contained greater amounts of adipocyte-derived chemokines and the use of the conditioned medium from these cultures in functional assays was able to actively recruit T and B lymphocytes. Finally, the production of chemokines involved in TLO formation by 3T3-L1 adipocytes was directly elicited by a combination of TNF-α and LPS in vitro. We therefore propose a mechanism in which mesenteric adipocyte, through their production of key chemokines in response to inflammatory/bacterial stimuli, may orchestrate the formation of functional TLOs developing in CD-affected mesentery

    I-FABP is decreased in COVID-19 patients, independently of the prognosis.

    No full text
    BackgroundSevere acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) is frequently associated with gastrointestinal manifestations. Herein we evaluated the interest in measuring the intestinal fatty acid-binding protein (I-FABP), a biomarker of intestinal injury, in COVID-19 patients.MethodsSerum I-FABP was analyzed in 28 consecutive patients hospitalized for a PCR-confirmed COVID-19, in 24 hospitalized patients with non-COVID-19 pulmonary diseases, and 79 patients admitted to the emergency room for abdominal pain.ResultsI-FABP serum concentrations were significantly lower in patients with COVID-19, as compared to patients with non-COVID-19 pulmonary diseases [70.3 pg/mL (47-167.9) vs. 161.1 pg/mL (88.98-305.2), respectively, p = 0.008]. I-FABP concentrations in these two populations were significantly lower than in patients with abdominal pain without COVID-19 [344.8 pg/mL (268.9-579.6)]. I-FABP was neither associated with severity nor the duration of symptoms. I-FABP was correlated with polymorphonuclear cell counts.ConclusionsIn this pilot study, we observed a low I-FABP concentration in COVID-19 patients either with or without gastrointestinal symptoms, of which the pathophysiological mechanisms and clinical impact remain to be established. Further explorations on a larger cohort of patients will be needed to unravel the molecular mechanism of such observation, including the effects of malabsorption and/or abnormal lipid metabolism

    Accuracy of citrulline, I-FABP and D-lactate in the diagnosis of acute mesenteric ischemia

    Get PDF
    International audienceEarly diagnosis of acute mesenteric ischemia (AMI) remains a clinical challenge, and no biomarker has been consistently validated. We aimed to assess the accuracy of three promising circulating biomarkers for diagnosing AMI-citrulline, intestinal fatty acid-binding protein (I-FABP), and D-lactate. A cross-sectional diagnostic study enrolled AMI patients admitted to the intestinal stroke center and controls with acute abdominal pain of another origin. We included 129 patients-50 AMI and 79 controls. Plasma citrulline concentrations were significantly lower in AMI patients compared to the controls [15.3 Όmol/L (12.0-26.0) vs. 23.3 Όmol/L (18.3-29.8), p = 0.001]. However, the area under the receiver operating curves (AUROC) for the diagnosis of AMI by Citrulline was low: 0.68 (95% confidence interval = 0.58-0.78). No statistical difference was found in plasma I-FABP and plasma D-lactate concentrations between the AMI and control groups, with an AUROC of 0.44, and 0.40, respectively. In this large cross-sectional study, citrulline, I-FABP, and D-lactate failed to differentiate patients with AMI from patients with acute abdominal pain of another origin. Further research should focus on the discovery of new biomarkers
    • 

    corecore