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SUMMARY

Non-human primate neuroimaging is a rapidly growing
area of research that promises to transform and scale
translational andcross-species comparativeneurosci-
ence. Unfortunately, the technological and methodo-
logical advances of the past two decades have
outpaced the accrual of data, which is particularly
challenging given the relatively few centers that have
the necessary facilities and capabilities. The PRIMatE
Data Exchange (PRIME-DE) addresses this challenge
by aggregating independently acquired non-human
primate magnetic resonance imaging (MRI) datasets
and openly sharing them via the International Neuroi-
maging Data-sharing Initiative (INDI). Here, we present
the rationale, design, and procedures for the PRIME-
DE consortium, as well as the initial release, consisting
of 25 independent data collections aggregated across
22 sites (total = 217 non-human primates). We also
outline the unique pitfalls and challenges that
Neuron 100, 61–74, O
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should be considered in the analysis of non-human
primate MRI datasets, including providing automated
quality assessment of the contributed datasets.

INTRODUCTION

Translational, comparative neuroscience research enables a

bridging of knowledge gaps across species as well as invasive

and noninvasive approaches. A growing body of research has

documented the utility of magnetic resonance imaging (MRI)

technologies to support in vivo examination of brain organization

and function in non-human primates (Vanduffel et al., 2014;

Rilling, 2014; Van Essen and Glasser, 2014; Zhang et al., 2013;

Shmuel and Leopold, 2008; Schwiedrzik et al., 2015). Recent

work has demonstrated the ability to recapitulate findings from

gold-standard invasive methodologies (Ghahremani et al., 2017;

Donahue et al., 2016; Grayson et al., 2016). This work also pro-

vides novel insights into the organizational principles of the non-

humanprimate (NHP) connectome (Goulas et al., 2017;Hutchison

and Everling, 2014; Hutchison et al., 2011; Vincent et al., 2007)
ctober 10, 2018 ª 2018 The Authors. Published by Elsevier Inc. 61
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and cross-species comparative connectomics (Hutchison et al.,

2012, 2015; Miranda-Dominguez et al., 2014; Mars et al., 2011;

Seidlitz et al., 2018a), which are possible only through in vivo

studies. These advances are timely given the growing promi-

nence of large-scale national and international initiatives focused

on advancing our understanding of human brain organization and

the ability to generate novel therapeutics for neurology and

psychiatry (Bargmann and Newsome, 2014).

Despite the clear demonstrations of feasibility and utility, the field

of non-human primate neuroimaging is still developing. Numerous

unique challenges related to the acquisition andprocessing of non-

human primate data are still being addressed (e.g., Seidlitz et al.,

2018b; Hutchison and Everling, 2012), and the potential for broad

reaching cross-species studies remains unexploited. Perhaps

most challenging is the limited availability of data.

Here, we introduce the PRIMatE Data Exchange (PRIME-DE) to

create an open science resource for the neuroimaging community
62 Neuron 100, 61–74, October 10, 2018
that will facilitate the mapping of the non-human primate connec-

tome. To accomplish this, weaggregate a combination of anatom-

ical, functional, and diffusion MRI datasets from laboratories

throughout the world and make these data available to the

scientific community. It merits emphasis that PRIME-DE supports

an ongoing process that will remain open to new contributions

of data from macaques and other non-human primate species.

RESULTS

Overview
At present, PRIME-DE contains 25 collections aggregated

across 22 sites; to date, data from 217 primates are included

(see Table 1 for information on each institution). Contributions

will continue to be accepted and shared on a rolling basis.

To promote usage of a standardized data format, we organized

all data using the Brain Imaging Data Structure (BIDS) format

mailto:michael.milham@childmind.org
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Table 1. Experimental Design

Investigators Speciesa Subjects State

Contrast

Agent

Structural

T1

Structural

T2

Resting

State fMRI

Naturalistic

Viewing fMRI

Task

fMRI

Field

map

Diffusion

MRI

AMU Belin, Brochier, Sein MM 4 Anesthetized No ✔ ✔ – – – – ✔

Caltech Rajimehr, Tsao MM 2 Awake Yes – – – 96 min – – –

ECNU (C) Aihua Chen MM 10 Anesthetized No ✔ – – – – – –

ECNU (K)b Kwok, Zhou MM 4 Anesthetized No ✔ ✔ 8 min – – – ✔

Institute of

Neuroscience (IoN)

Wang MM, MF 8 Anesthetized No ✔ – 20–40 min – – ✔ –

Institut des Sciences

Cognitives Marc

Jeannerod

Ben Hamed, Hiba MM 8 Anesthetized/

Awake

Yes ✔ – ✔ – ✔ – ✔

Lyon Neuroscience

Research Center

Hadj-Bouziane,

Meunier, Guedj

MM 1 Anesthetized/

Awake

Yes/No ✔ ✔ 13 min – – – –

McGill University Mok, Rudko, Shmuel MM, MF 3 Anesthetized No ✔ ✔ – – – – –

Mount Sinai (P) Croxson, Fleysher MM, MF 9 Anesthetized No ✔ ✔ 43 min – – ✔ ✔

Mount Sinai (S) Croxson, Fleysher,

Froudist-Walsh,

Damatac, Nagy

MM 5 Anesthetized No ✔ ✔ – – – – ✔

NKI Schroeder, Milham MM 2 Anesthetized/

Awake

Yes/No ✔ 76–155 min 55–345 min – – –

NIMH (L)c Leopold, Russ MM 3 Awake Yes ✔ ✔ 30–150 min 170 min – – –

NIMH (M)c,d Messinger, Jung,

Seidlitz, Ungerleider

MM 3 Anesthetized/

Awake

Yes ✔ – 10�15 min – – – –

Netherlands

Institute for

Neuroscience (NIN)

Klink, Roelfsema MM 2 Anesthetized No ✔ ✔ 9.7 min – – – –

NeuroSpin Jarraya, Dehaene MM 3 Anesthetized Yes/No ✔ – ✔ – – – –

Newcastle Petkov, Nacef, Thiele,

Poirier, Balezeau,

Griffiths, Schmid, Rios

MM 14 Anesthetized/

Awake

No ✔ ✔ 21.6 min – – – –

OHSU Sullivan, Fair MM 2 Anesthetized Yes/No ✔ ✔ 480 min – – – –

Princeton Kastner, Pinsk MM 2 Anesthetized ✔ ✔ – – – ✔ ✔

Rockefeller Schwiedrzik, Freiwald,

Zarco

MM, MF 6 Anesthetized Yes ✔ – 80 min – – ✔

SBRI Procyk, Wilson, Amiez MM, MF 22 Anesthetized No ✔ ✔ ✔ – – – –

UC Davis Baxter, Croxson,

Morrison

MM 19 Anesthetized No ✔ ✔ 13.5 min – – ✔ ✔

Univ. of

Minnesota (UMN)

Yacoub, Harel M 2 Anesthetized – ✔ – 27 min – – ✔ ✔

(Continued on next page)
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(Gorgolewski et al., 2017). All PRIME-DE datasets can be ac-

cessed through the PRIME-DE site (http://fcon_1000.projects.

nitrc.org/indi/indiPRIME.html). Prior to downloading the data,

users are required to establish a user account on NITRC and reg-

ister with the International Neuroimaging Data-sharing Initiative

(INDI; anticipated time: <1 min).

MRI Data
With one exception, for each of the PRIME-DE collections, at least

one structural MRI (sMRI) is available for each unique ID number

(see Table 1). Eighteen of the collections contain at least one cor-

responding resting-state functional MRI (R-fMRI) dataset, and

three of the collections contain naturalistic viewing fMRI (NV-

fMRI). In addition, one collection from the National Institutes of

Mental Health (NIMH (M)) also provided cortical thickness data

and R-fMRI data aligned to an anatomical template. Correspond-

ing diffusionMRI (dMRI) datasets are available for nine collections.

Field map images for fMRI correction are available for six collec-

tions. Consistent with its popularity in the imaging community

and prior usage in INDI efforts, the NIFTI file format was selected

for storage of the PRIME-DE MRI datasets. Table 2 lists the

specific MRI scanners and head coils utilized for each collection.

Specific MRI sequence parameters for the various data collec-

tions are summarized in Tables S1, S2, S3, and S4 and detailed

on the PRIME-DEwebsite. Across collections, R-fMRI acquisition

durations varied from 8 to 155 min per subject. In two collections,

subjects were in an awake state. In five collections, subjects were

scanned both awake and under anesthesia. One collection

scanned 51 post-mortem specimens. In the remaining 17 collec-

tions, subjects were scanned under anesthesia. For the three

collections with NV-FMRI, acquisition durations varied from 55

to 375 min. See Figures 3 and 4 for example structural and func-

tional images from the different sites aligned in a common space.

Data Licensing
Contributors to PRIME-DEwill be able to set the sharing policy for

their data in accordwith their preferences and institutional require-

ments.Foreachsample, thecontributorwill set thesharingpermis-

sions for their data using one or more the following three policies:

(1) Creative Commons – Attribution-Non-Commercial Share

Alike (CC-BY-NC-SA) (https://creativecommons.org/

licenses/by-nc-sa/4.0/). Standard INDI data sharing pol-

icy. Prohibits use of the data for commercial purposes.

(2) Creative Commons – Attribution (CC-BY) (https://

creativecommons.org/licenses/by/4.0/). Least restrictive

data sharing policy.

(3) Custom Data Usage Agreement. Users must complete a

data usage agreement (DUA) prior to gaining access to the

data. Contributors can customize the agreement as they

see fit, including determining whether or not signatures

from authorized institutional official are required prior to

executing theDUA.Note: thisoptionwascreated to facilitate

potential contributors whose institution requires completion

of a formal interinstitutional agreement in order to sharenon-

human primate data. Of note, one lesson learned from the

human neuroimaging literature is that such agreements are

notdissuasive, as is evidencedby thesuccessof theHuman

http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Table 2. Scanner Information

Site Manufacturer Model

Field

Strength (T) Head coil # channels

AMU Siemens Prisma 3 Body transmit array, 11 cm

loop receiving coil

Caltech Siemens Tim Trio 3 8

ECNU (C) Siemens Tim Trio 3 –

ECNU (K) Siemens Tim Trio 3 1-channel surface coil

Institute of Neuroscience (IoN) Siemens Tim Trio 3 8-channel phased-array transceiver coils

Institut des Sciences Cognitives

Marc Jeannerod

Siemens Sonata/Prisma 1.5/3 8-channel custom head coils/association

of independent circular coils

Lyon Neuroscience Research

Center

Siemens Sonata/Prisma 1.5/3 Custom-made 10 cm loop receiving coil 23

L11 and 13 L7 Siemens loop-receiving coil

McGill University Siemens Tim Trio 3 Custom-made 8-channel phased-array

receive coil

Mount Sinai (P) Philips Achieva 3 Single loop receive coil (T1 and T2)

4-channel phased-array receive, transmit

through body coil (resting state and

diffusion)

Mount Sinai (S) Siemens Skyra 3 8-channel phased-array receive with

a single loop transmit

NKI Siemens Tim Trio 3 Custom-made 8-channel phased-array

receive coil (KU Leuven) with a custom

16-channel pre-amplifier (MRcoils)

NIMH (L) Bruker BiospecVertical 4.7 8

NIMH (M) Bruker BiospecVertical 4.7 1–4

Netherlands Institute for

Neuroscience (NIN)

Philips Ingenia 3 Custom-made 8-channel phased-array

receive coil (KU Leuven) with a custom

16-channel pre-amplifier (MRcoils).

NeuroSpin Siemens Tim Trio/PrismaFit 3 1chTxRxcoil/1Tx-8Rxchcoil

Newcastle Bruker Vertical Bruker 4.7 4–8

OHSU Siemens Tim Trio 3 Knee coil 15 channel

Princeton Siemens Prisma VE11C 3 Siemens Loop Coil, Large (11 cm)

Rockefeller Siemens TIM Trio + AC88 gradient 3 8-channel phased-array receive with a

single-loop transmit

SBRI Siemens Sonata/Prisma 1.5/3 Custommade 10 cm loop receiving coil 23

L11 and 1 3 L7 Siemens loop receiving coil

UC Davis Siemens Skyra 3 4

Univ. of Minnesota (UMN) Siemens SyngoB17 7 16-channel transmit/receive +

6 receive only

Univ. of Oxford – – 3 A four-channel phased-array coil

NIN Primate Brain Bank/Utrecht

University

Varian/Siemens Small-bore scanner/

Magnetom trio

9.4/3 –

Univ. of Western Ontario (UWO) Siemens Magnetom 7 Custom-made 24-channel phased-array

receive coil with an 8-channel transmit coil

Information on scanner and head coil for PRIME-DE data collections contributed prior to the time of publication. Note that scanner information from

University of Oxford is not reported due to an agreement made previously with the scanner manufacturer. For scan sequences, see also Tables S1, S2,

S3, and S4.
Connectome Project (Van Essen et al., 2013) and the NKI-

Rockland Sample (Nooner et al., 2012).

Automated Quality Assessment
Consistentwith theestablishedpolicy of INDI, all data contributed

to PRIME-DE was made available to users regardless of data
quality; users should check data quality before inclusion in their

analyses. The rationale of this decision has been the lack of

consensus on optimal quality criteria in regards to specific mea-

sures or their combinations and cutoffs—a reality that is even

more pronounced in non-human primate imaging given the varia-

tion in data quality and characteristics across scan protocols. Of
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Table 3. Description of PCP QAP Measures

Spatial Metrics Description References

Contrast-to-noise ratio (CNR) (sMRI only) MGM intensity—MWM intensity/SDair intensity.

Larger values reflect a better distinction between

WM and GM.

Magnotta et al., 2006

Artifactual voxel detection (Qi1) (sMRI only) Voxels with intensity corrupted by artifacts/voxels in

the background. Larger values reflect more artifacts

which likely due to motion or image instability.

Mortamet et al., 2009

Smoothness of Voxels (FWHM)a Full width at half maximum of the spatial distribution

of the image intensity values. Larger values reflect

more spatial smoothing perhaps due to motion or

technical differences.

Friedman et al., 2006

Signal-to-noise ratio (SNR) MGM intensity/SDair intensity. Larger values reflect

less noise.

Magnotta et al., 2006

Temporal Metrics (fMRI and DTI only) Description References

Ghost-to-Signal Ratio (GSR)a M signal in the ‘‘ghost’’ image divided by the M signal

within the brain. Larger values reflect more ghosting

likely due to physiological noise, motion, or technical

issues.

Giannelli et al., 2010

Mean frame-wise displacement- Jenkinson (meanFD)b Sum absolute displacement changes in the x, y,

and z directions and rotational changes around them.

Rotational changes are given distance values based on

changes across the surface of a 50 mm radius sphere.

Larger values reflect more movement.

Jenkinson et al. 2002

Standardized DVARSb Spatial SD of the data temporal derivative normalized

by the temporal SD and autocorrelation. Larger values

reflect larger frame-to-frame differences in signal

intensity due to head motion or scanner instability.

Nichols, 2012

Global Correlation (GCORR)b M correlation of all combinations of voxels in a time

series. Illustrates differences between data due to

motion/physiological noise. Larger values reflect a

greater degree of spatial correlation between slices,

which may be due to head motion or ‘‘signal leakage’’

in simultaneous multi-slice acquisitions.

–

Here, we provide a brief description of the Preprocessed Connectome Project Quality Assessment Protocol. These measures have been computed

for all structural MRI (sMRI) and resting-state functional MRI (R-fMRI) datasets in PRIME-DE. The table was adopted from Di Martino et al. (2017).
aFor R-fMRI data, these metrics are computed on mean functional data
bFor R-fMRI, these metrics are computed on time series data. M, mean; GM, gray matter; WM, white matter; SD, standard deviation
note, a benefit of sharing datawithdiffering levels of quality data is

also important for those working to develop methods for evalu-

ating, and at times overcoming, such variations.

Following the tradition of recent INDI data-sharing consortia,

a collection of automated, reference-free quality assurance

measures, known as the Preprocessed Connectome Project

Quality Assurance Protocol (PCP-QAP; Shehzad et al., 2015),

is being made available with the PRIME-DE datasets. These

measures focus on structural and temporal (when appropriate)

aspects of the datasets. Table 3 provides a brief description of

the measures included, and Figures 1 and 2 depict a subset of

QAP results (Magnotta et al., 2006; Mortamet et al., 2009; Gian-

nelli et al., 2010; Jenkinson et al., 2002; Friedman et al., 2006;

Nichols, 2012). As would be expected, measures of head mo-

tion are notably smaller for sites using anesthetized scan ses-

sions than for awake (NIMH (L), NIMH (M), NKI, Newcastle,

Lyon Neuroscience Research Center). Importantly, the mea-

sures provided are not intended to be definitive for the field

or all encompassing; rather, they are included to spur interest
66 Neuron 100, 61–74, October 10, 2018
in the potential utility and further development of automated

measures.

DISCUSSION

Challenges in the Processing of Non-human Primate
Imaging Data
We confront a variety of challenges when trying to adapt well-

established methods for human neuroimaging processing to pri-

mate data. Beyond the differences between species in tissue

contrast, brain shape and size, and type and amount of tissue

surrounding the brain, there are significant differences in data

collection equipment and acquisition protocols. Non-human

primate data are often acquired at very high fields (4.7T, 7T,

9.4T, 11.7T), using some non-standardized arrangement of sur-

face coils. These result in increased variations in image intensity

due to B1 inhomogeneity and non-uniform coil coverage and in

greater distortion and dephasing due to susceptibility. Another

issue is that the equipment and acquisition protocols used are



Figure 1. Spatial Quality Metrics for Morphometry MRI Datasets

Spatial quality metrics include: contrast-to-noise ratio (CNR), smoothness of voxels indexed as full width at half maximum (FWHM), signal-to-noise ratio (SNR),

and artifactual voxel detection (Qi1). See Table 3 for details on this and the other quality metrics released. The colored scatterplots illustrate the quality metrics

distribution for each data collection. The violin plots on the left of each panel represent a kernel density estimation of the distribution across all data collections for

each quality metric. Starting from the bottom: each horizontal line marks the 1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles.
typically customized, resulting in substantial variation in the

quality and characteristics of data collected at different sites.

Consequently, there is no one-size-fits-all strategy for process-

ing animal data, and researchers need a great deal of flexibility

to optimize their pipelines for the data at hand.

Brain extraction and tissue segmentation aremore challenging

in non-human primate imaging data due to differences in tissue

contrast and the nature of structures immediately surrounding

the brain. If compromised, these steps in turn can dramatically

compromise image registration and normalization procedures

as well as temporal de-noising approaches. As of yet, there is

no consensus for an optimal solution for each of these process-

ing steps, in part due to the many sources of variation across
studies that can differentially impact data characteristics and

quality (e.g., anesthesia protocols, coil type, use of contrast

agents, magnet strength, animal/rodent type). Additionally,

commonly used pre-processing pipelines, used extensively

with human neuroimaging datasets, often fail to work properly

on non-human primate datasets. As a result, researchers

commonly work to optimize individual steps for their datasets

outside of traditional workflows, resulting in different pipelines

and processing steps across groups. There are efforts underway

to form best practices to guide this process and help researchers

avoid the need to redefine pipelines themselves (e.g., Seidlitz

et al., 2018b; Love et al., 2016); currently, however, it is still

necessary for researchers to do so.
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Figure 2. Spatial and Temporal Quality Metrics

for Functional MRI Datasets

Spatial quality metrics include: ghost-to-single ratio

(GSR), smoothness of voxels indexed as full width at half

maximum (FWHM), and signal-to-noise ratio (SNR).

Temporal metrics are mean frame-wise displacement

(Mean FD), standardized DVARS, global correlation

(GCORR), and temporal signal-to-noise ratio (tSNR). See

Table 3 for details on this and the other quality metrics

released. The colored scatterplots illustrate the quality

metrics distribution for each data collection. The violin

plots on the left of each panel represent a kernel density

estimation of the distribution across all data collections

for each quality metric. Starting from the bottom: each

horizontal line marks the 1st, 5th, 25th, 50th, 75th, 95th, and

99th percentiles.
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Figure 3. Example Structural Images

Example structural images aligned to the common space defined by the NMT template.
Resources and Solutions
Templates and Atlases

A number of macaque templates were created in the

last decade, including single-animal templates, e.g., the

NeuroMap macaque atlas (M.F. Dubach and D.M. Bowden,

2009, Soc. Neurosci., abstract) and the 3D Digital D99 Tem-

plate (Reveley et al., 2017), and population-averaged tem-

plates based on multiple animals, e.g., 112RM-SL (McLaren

et al., 2009), INIA19 (Integrative Neuroscience Initiative on

Alcoholism; (Rohlfing et al., 2012), MNI (Montreal Neurological

Institute; (Frey et al., 2011), CIVM MRI/DTI atlas (Calabrese
et al., 2015), and the most recent NMT (National Institute of

Mental Health Macaque Template; (Seidlitz et al., 2018b). In

addition, there are surface-based atlases, including the ma-

caque single-subject F99 atlas (Van Essen, 2012, 2002) and

the group-average Yerkes19 macaque atlas (Donahue et al.,

2016). Data collected in individual macaques can be aligned

to these templates using affine and non-linear registration.

These templates provide a common anatomical space and

coordinate system for specifying specific brain locations

and visualizing data collected across days, animals, and

laboratories.
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Figure 4. Example Functional Images
Example functional images aligned to the common space defined by the NMT template.
Of note, some templates link to volumetric digital brain atlases

(Frey et al., 2011; Reveley et al., 2017; Seidlitz et al., 2018b;

Saleem and Logothetis, 2012) derived from analysis of histolog-

ical tissue (Saleem and Logothetis, 2012; Paxinos et al., 1999;

Paxinos, 2009). These anatomical parcellations can be warped

to individual subjects using standard linear and non-linear regis-

tration algorithms (e.g., AFNI’s 3dAllineate and 3dQwarp).

Scripts to automate this alignment are available for the

single-subject D99 template (https://afni.nimh.nih.gov/pub/

dist/atlases/macaque) and the recently published National Insti-

tute of Mental Health Macaque Template (NMT; Seidlitz et al.,

2018b; https://afni.nimh.nih.gov/NMT). The NMT is a high-reso-

lution (0.25 mm isotropic) T1 template built from in vivo scans of

31 young adult macaques. This volume (and accompanying sur-

faces) is representative of the adult population and provides

anatomical detail akin to that of ex vivo templates, which require

days of scanning to acquire. The NMT is available via the PRIME-

DE website as well as on GitHub (https://github.com/jms290/

NMT). The database also includes resting-state data from three

subjects that have been aligned to the NMT (see NIMH (M) in

Table 1). A similar multi-subject template also exists for pre-

pubertal rhesus monkeys (Fox et al., 2015); additionally, the

publically available UNC-Wisconsin Rhesus Macaque Neurode-
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velopment Database features a longitudinal dataset that can be

used to provide insights into age-related changes in structure

(Young et al., 2017).

Other anatomical parcellations have been defined on the sur-

face using the single-subject F99 template (available in Caret;

Van Essen et al., 2012), which can be used for analysis on the

cortical sheet. For example, the cortical parcellation from Mar-

kov et al. (2014) includes quantitative tract-tracing connectivity

estimates for a subset of these regions.

Improving Skull Extraction, Segmentation, and

Registration

A high-quality T1 image with isotropic voxels is important for

skull extraction. There are a number of brain extraction algo-

rithms and available tools, e.g., the Brain Extraction Tool (BET

in FSL; Smith, 2002), 3dSkullStrip in AFNI (Cox, 1996), the Hybrid

Watershed Algorithm (HWA in FreeSurfer; (Ségonne et al., 2004),

BSE in BrainSuite (Shattuck and Leahy, 2002), Robust Brain

Extraction (ROBEX; Iglesias et al., 2011), Primatologist toolbox

(Balbastre et al., 2017), and ANTs (Avants et al., 2011). Most of

these tools can be effectively applied to human data; however,

the performance is suboptimal and variable in NHP due to the

differences in brain structure (e.g., size, adipose tissue, olfactory

bulb) and the quality of the T1 image (SNR, inhomogeneous

https://afni.nimh.nih.gov/pub/dist/atlases/macaque
https://afni.nimh.nih.gov/pub/dist/atlases/macaque
https://afni.nimh.nih.gov/NMT
https://github.com/jms290/NMT
https://github.com/jms290/NMT


intensity). Accordingly, the parameters and/or related atlas li-

brary need to be customized to optimize the brain extraction in

NHP. For example, in AFNI, the program ‘‘3dSkullStrip’’ with

alternative options ‘‘-monkey,’’ ‘‘-marmoset,’’ and ‘‘-surface_-

coil’’ is available for brain extraction in NHP. Population

brain templates, such as the NMT, can further improve and auto-

mate the registration and brain extraction process (Seidlitz

et al., 2018b).

Standard segmentation algorithms can separate gray versus

white matter, but if the signal is not homogeneous, which is typi-

cally the case at higher magnetic fields, segmentation in some

parts of the brain will be better than others (especially subcorti-

cally). Registration of T2 datasets to T1 structural scans also re-

mains a challenge. Affine or non-linear registration algorithms

can work well provided that intermediate scans are available.

For instance, a full brain T1 structural scan from the same individ-

ual obtained along with T2 images (also with as much coverage

of the brain as possible) could be crucial for registering T2 data-

sets to any of the freely available monkey template brains that

are registered to macaque atlases.

One way to reduce or eliminate the manual intervention during

brain extraction and tissue segmentation—using only the typi-

cally acquired T1 scan—is to rely on priors defined on a high-

resolution and high-contrast template. The multi-subject NMT

includes manually refined masks of the brain, cortical gray mat-

ter, and various tissue types (including blood vasculature; Seid-

litz et al., 2018b). Applying the inverse anatomical alignment

transformations to the NMT brain mask produces an approxi-

mate single-subject mask for brain extraction. Amore precise in-

dividual brain mask and tissue segmentation can be obtained

using the NMT’s representative brain and tissue segmentation

masks as priors. The NMT distribution includes scripts that use

AFNI and ANTs to perform these mask refinements (as well as

morphological analysis). These improvements could be critical

for later processing steps for fMRI data. Furthermore, the NMT

includes surfaces for visualization of individual subject or group

results in a standard coordinate space. Future work could add to

these advances, such as tailoring existing surface-based pro-

cessing pipelines (e.g., CIVET or FreeSurfer) to be specifically

used with non-human primate MRI data.

Head Motion

Headmotion in NHP imaging is an important concern, just as it is

in human neuroimaging studies. For themost part, one can apply

human imaging motion correction techniques to NHP data

directly. However, there are a few concerns with NHP neuroi-

maging that will be addressed below.

Anesthesia is commonly used in NHP functional neuroimag-

ing, in part due to the lower behavioral and technical demands

compared to awake imaging. As reflected by the QAP results,

another benefit is that anesthesia dramatically reduces motion

artifacts during NHP scanning. However, the use of anesthesia

comes with its own set of tradeoffs dealing with how the drugs

used interact with neural activity. There are changes in FC pat-

terns due to the particular set and doses of agents used and in

comparison to awake imaging (Xu et al., 2018). For this reason,

researchers should always assess how anesthesia may, or

may not, influence the results of their study before using it. It

should be noted that in some studies, anesthesia can be an
experimental goal; for example, fMRI imaging in anesthetized

macaques can help reveal brain mechanisms of loss of con-

sciousness (Barttfeld et al., 2015).

In awakeNHP imaging, the animals are farmore likely to create

motion artifacts, which need to be addressed during data pre-

processing and analyses when they occur. Of note, these arti-

facts tend to be caused by body movements (Pfeuffer et al.,

2007) rather than head movements, as the head is usually fixed

and stable. Body movements can cause changes in the mag-

netic field, making the shimming performed at the beginning of

the scan ineffective (Pfeuffer et al., 2007); the monitoring of full

body position can be helpful to eliminate motion artifacts (Keliris

et al., 2007). Additionally, acclimation to the chair and scanner

setup and training to remain still are of great importance in

reducing the amount of motion artifacts. As with human neuroi-

maging best practices, keeping individual scan periods to the

shortest necessary for your task will help to reduce motion

artifacts. Recent human studies also suggested that movie

(NV-fMRI) paradigm may help to reduce head motion relative

to resting conditions (e.g., Vanderwal et al., 2015; Alexander

et al., 2017). This is also true in awake NHP imaging; for example,

in the PRIME-DE NKI site, the mean FD for rest sessions was

0.21 (SD = 0.03), but 0.14 (SD = 0.07) during movie sessions

(t = 2.82, p = 0.006, df = 128).

Regarding motion-correction algorithms, those designed for

human neuroimaging data perform similarly for NHP data. As

such, most groups use SPM, AFNI, ANTs, or FSL software to es-

timate the motion parameters and remove motion artifacts. The

estimates of the movement values can be used as regressors of

no interest during the analysis of functional data, if desired. The

grayplot, proposed by Power (2017), can be used to illustrate the

motion and the de-noising effects. However, as with all neuroi-

maging data, image distortions or signal drop-out caused move-

ment correction to be suboptimal.
Next Steps
The PRIME-DE is an ongoing data-sharing consortium stew-

arded by INDI, which has shared more than 15,000 human imag-

ing datasets over the past decade. As such, we invite new con-

tributions from all investigators in the NHP imaging community,

not just those involved in the consortium at the time of the initial

release. It is our hope that future contributions will help to cap-

ture and promote emerging trends in the NHP community,

such as the increasing ability to image during awake states

and usage of high-field scanners (e.g., 7.0T), as well as the

growing range of species being examined (e.g., marmosets).

Additionally, we hope that other data modalities obtained in

the NHP community (e.g., electrophysiology) will be shared

with higher frequency. Similar to other INDI-based efforts,

PRIME-DE is intended to take the first step—establishing a cul-

ture for sharing. The logical second step is building toward an

optimal infrastructure for sharing. In this regard, it is our hope

that open access database and computational platforms will

work to increase their support for the needs of NHP imaging.

Finally, it is our hope that, building upon the spirit of sharing

engendered in PRIME-DE, users will share their resultant statis-

tical maps with one another via venues such as Neurovault
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(Gorgolewski et al., 2015), which can now handle results from

NHP studies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

NMT Template Seidlitz et al., 2018b https://github.com/TingsterX/PRIME-DE

Preprocessed Connectome Project Quality

Assurance Protocol

Shehzad et al., 2015 http://preprocessed-connectomes-project.org/quality-

assessment-protocol/

FSL Smith et al., 2004 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; RRID: SCR_002823

AFNI Cox, 1996 https://afni.nimh.nih.gov/; RRID: SCR_005927

FreeSurfer Fischl, 2012 https://surfer.nmr.mgh.harvard.edu/; RRID: SCR_001847

ANTs Avants et al., 2011 http://stnava.github.io/ANTs/; RRID: SCR_004757
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact,Michael P.

Milham (michael.milham@childmind.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics Approval and Consent to Participate
All experimental procedures were approved by local ethics boards prior to any data collection. UKmacaque datasets were obtained

with HomeOffice approval and abide with the European Directive on the protection of animals used in research (2010/63/EU). For the

NIN Primate Brain Bank/Utrecht University dataset, post-mortem specimens were loaned from the Netherlands Institute of Neuro-

science Primate Brain Bank (PBB; http://www.primatebrainbank.org/). No individuals were sacrificed for PBB brain issue. Instead,

brains were collected from individuals that died from natural causes or that had to be humanely euthanized for reasons unrelated to

the tissue collection.

METHOD DETAILS

Criteria for Data Contributions
PRIME-DE welcomes contributions from any laboratory willing to openly share multimodal MRI datasets obtained from non-human

primates, including but not limited to functional MRI, diffusion MRI and structural MRI. Contributors are responsible for ensuring that

any data collected and shared were obtained in accordance with local ethical and regulatory requirements.

There are no set exclusion criteria. We encourage the sharing of all data, independent of quality. This decision is based on the re-

alizations that: 1) there is no consensus on acceptable criteria for movement in functional MRI or diffusion MRI data, 2) high motion

datasets are essential to the determination of the impact of motion on reliability, and 3) new approaches continue to be developed to

account for movement artifacts. We also encourage submission of data from other modalities (e.g., ASL) or experimental paradigms

(e.g., longitudinal data, pharmacologic manipulations) when available.

Metadata
Any imaging metadata (e.g., protocol parameters) provided with the data contribution are represented in the BIDS data format. In the

case that data are provided in DICOM format, the metadata from the DICOM are used to population the .json file available with BIDS.

Given that this is a retrospective data collection, phenotypic data primarily focuses on basic measures that are relatively standard

in the neuroimaging field, as well as those fundamental for analyses and sample characterization. Minimal phenotypic information

includes: age, sex, species. The contribution of additional variables that can enhance data usage is encouraged, though not required.

When additional measurements of brain function and behavior are available (e.g., electrophysiology, eye tracking), we will share

this data along with the imaging. For any data types that are not yet included in the BIDS format, we will include the relevant metadata

in accompanying .csv files; a readme.txt file will facilitate any additional instructions for integration of information. In the long-run, we

expect that such specifications will evolve in the BIDS format and we will adopt them accordingly.

Following the model of prior efforts, all contributions are reviewed by the INDI team following upload and corrected as needed to

ensure consistent data organization within and across sites. Before open release, each contributing site reviews their reorganized

phenotypic records, five random images per imaging modality and their collection-specific narrative for final approval.
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Alignment to a Common Space
For the purposes of illustration, we depict sample anatomical and functional images (when available) for each contribution to PRIME-

DE. Here, we provide a summary of the steps employed for alignment to the common space defined by the NMT template (Seidlitz

et al., 2018b), which was essential for creation of Figures 3 and 4 (extracted brains and scripts required for generation of figure are

available at: https://github.com/TingsterX/PRIME-DE).

The intensity correction was first applied to T1 images using ANTs ‘N4BiasFieldCorrection’. Then the T1 images were skull stripped

using the AFNI 3dSkullstrip with ‘-monkey’ option and ANTs tools by registering the individual head image to NMT head template and

then inverse transformed the NMT brain mask into the individual space. The better brain masks were selected and manually cor-

rected if needed. The skull stripped T1 images were then registered to NMT template for the final demonstration.

The functional image was initially skull stripped using the union of the results of ‘bet20 and ‘3dAutomask’. The T1 brain mask

created from the structural processing above was then transformed back to the functional space for further refinement of the func-

tional brain mask for a given subject; this was accomplished using the inverse transform calculated from the transformation from the

space of the EPI to that of the high resolution anatomical image (i.e., rigid body transformation). Finally, the functional image was

extracted again using the refined brain mask and registered to the T1 image. For the final demonstration, we combined the trans-

formation from functional to anatomical image and the warp from anatomical to template to align functional image to the NMT

template.

DATA AND SOFTWARE AVAILABILITY

Data Preparation and Aggregation
PRIME-DE data aggregation is carried out through the International Neuroimaging Data-sharing Initiative (INDI; Mennes et al., 2013);

the portal is located at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC; http://fcon_1000.projects.nitrc.

org/indi/indiPRIME.html).

NMT Alignment
Extracted brains and scripts required for generation of Figures 3 and 4 are available at: https://github.com/TingsterX/PRIME-DE.
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