135 research outputs found

    Nanoelectrospray aerosols from microporous polymer wick sources

    Get PDF
    Nanoelectrospray aerosols were formed from microporous polymer wick sources. Current-voltage characteristics were measured as a function of solution electrical conductivity and surface tension and two distinct electrospray modes were observed. In the first mode, when the maximum capillary flow rate through the wick exceeds the electrospray flow rate, a single electrospray forms from a droplet at the end of the wick. In the second mode, when the maximum capillary flow rate is less than the electrospray flow rate, a multitude of microscopic nanoelectrospray sources are formed from within the surface of the wick tip

    An electrospray-based, ozone-free air purification technology

    Get PDF
    A zero-pressure-drop, ozone-free air purification technology is reported. Contaminated air was directed into a chamber containing an array of electrospray wick sources. The electrospray sources produce an aerosol of tiny, electrically charged aqueous droplets.Charge was transferred from the droplets onto polar and polarizable species in the contaminated air stream and the chargedcontaminants were extracted using an electric field and deposited onto a metal surface. Purified air emerged from the other end of the chamber. The very small aqueous electrospray droplets completely evaporate so that the process is essentially dry and no liquid solvent is collected or recirculated. The air purification efficiency was measured as a function of particle size, air flow rate, and specific system design parameters. The results indicate that the electrospray-based air purification system provides high air purification efficiency over a wide range of particle size and, due to the very low power and liquid consumption rate, can be scaled up for the purification of arbitrarily large quantities of air

    Microscale electrospinning of polymer nanofiber interconnections

    Get PDF
    Polymer fiber interconnects were produced between microscale features on a substrate using only electrostatic forces. Electric-field-driven directed growth of nanoscale carboxymethylcellulose fibers was achieved between microscale droplets of a concentrated polymer solution. The fibers were studied using atomic force and scanning electron microscopy and were observed to emerge from the tip of conical protrusions formed at the surface of the droplets. The conical structures appear to be analogous to the characteristic Taylor cones formed in an electrospinning process and the process is interpreted as a microscale version of electrospinning requiring significantly lower driving potentials

    Microscale polymeric helical structures produced by electrospinning

    Get PDF
    Microscale helical coils consisting of a composite of one conducting and one nonconducting polymer were produced using electrospinning. The nonconducting polymer was poly(ethylene oxide) and the conducting polymer was poly(aniline sulfonic acid). The coil structures were studied over a range of processing conditions and fiber composition. The data suggest that the helical structures are formed due to viscoelastic contraction upon partial neutralization of the charged fibers. Polymeric microcoils may find applications in microelectromechanical systems, advanced optical components, and drug delivery systems

    Contactless thermally stimulated lifetime measurements in detector-grade cadmium zinc telluride

    Get PDF
    Contactless thermally stimulated lifetime measurements were performed on detector-grade Cd1−xZnxTe (x∼0.1) crystals using a pulsed lasermicrowavecavityperturbation method. The carrier lifetime decreased from approximately 30 μs at 110 K to 4 μs at 160 K, and then remained relatively constant from 160 to 300 K. The sudden drop in carrier lifetime within a particular temperature range is consistent with the thermal activation of a charge trap with a detrapping time longer than the carrier lifetime. The maximum trap activation temperature and the minimum detrapping time are estimated from the lifetime versus temperature curve to be approximately 160 K and 10−6 s, respectively

    Impact of fugitive bitumen on polymer-based flocculation of mature fine tailings

    Get PDF
    In bitumen recovery from oil sands, a percentage of the bitumen is lost to tailings. The effect of fugitive bitumen on fines settling and consolidation in tailings ponds remains controversial. In the current study, the settling performance of mature fine tailings (MFT) in response to flocculant addition was considered by studying MFT of varying bitumen content. Bitumen content in the MFT was adjusted by controlled removal of bitumen using a Denver flotation cell. The initial settling rate of flocculated MFT was observed to increase with decreasing bitumen content from 0.45 to 0.18wt%. A further reduction in bitumen content was found to dramatically decrease the settling rate of flocculated MFT. Such behaviour seems counterintuitive since the polymer flocculant was found to have a greater affinity for 'clean' surfaces (Al2O3) than for bitumen contaminated surfaces, as measured by quartz crystal microbalance with dissipation (QCM-D), which would predict a further increase in settling rate of flocculated MFT with decreasing bitumen content. The reduction in settling rate below a critical bitumen content is thought to result from selective removal of hydrophobic solids, since washing of untreated MFT with toluene is shown to significantly improve settling of flocculated solids. The current study confirms the use of flotation as a viable option to control MFT bitumen content and improve the settling rate of flocculated MFT

    Gas Sensors Based on Electrospun Nanofibers

    Get PDF
    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films

    Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC

    Get PDF
    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search

    Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents

    Get PDF
    Cellulose derivatives are an attractive sustainable material used frequently in biomaterials, however their solubility in safe, green solvents is not widely exploited. In this work three cellulose derivatives; ethyl cellulose, cellulose acetate and carboxymethyl cellulose were subjected to electrohydrodynamic processing. All were processed with safe, environmentally friendly solvents; ethanol, acetone and water. Ethyl cellulose was electrospun and an interesting transitional region was identified. The morphological changes from particles with tails to thick fibres were charted from 17 to 25 wt% solutions. The concentration and solvent composition of cellulose acetate (CA) solutions were then changed; increasing the concentration also increased fibre size. At 10 wt% CA, with acetone only, fibres with heavy beading were produced. In an attempt to incorporate water in the binary solvent system to reduce the acetone content, 80:20 acetone/water solvent system was used. It was noted that for the same concentration of CA (10 wt%), the beading was reduced. Finally, carboxymethyl cellulose was electrospun with poly(ethylene oxide), with the molecular weight and polymer compositions changed and the morphology observed
    corecore