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Contactless thermally stimulated lifetime measurements in detector-grade
cadmium zinc telluride
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Contactless thermally stimulated lifetime measurements were performed on detector-grade
Cd12xZnxTe (x;0.1) crystals using a pulsed laser microwave cavity perturbation method. The
carrier lifetime decreased from approximately 30ms at 110 K to 4ms at 160 K, and then remained
relatively constant from 160 to 300 K. The sudden drop in carrier lifetime within a particular
temperature range is consistent with the thermal activation of a charge trap with a detrapping time
longer than the carrier lifetime. The maximum trap activation temperature and the minimum
detrapping time are estimated from the lifetime versus temperature curve to be approximately 160
K and 1026 s, respectively. ©2000 American Institute of Physics.@S0021-8979~00!03605-7#

I. INTRODUCTION

The compound semiconductor Cd12xZnxTe ~CZT! has
received considerable attention because it has the potential to
satisfy the requirements for high resolution, room tempera-
ture gamma radiation spectroscopy applications.1–3 Table I
provides some of the important properties of this material.
The band gap is sufficient to inhibit intrinsic thermal genera-
tion of charge carriers at room temperature and the combi-
nation of high atomic number and high material density re-
sults in good detection efficiency for gamma radiation. For
efficient charge collection the carrier lifetime~t! must be
long compared to the maximum drift time (td) within the
detector, which can be expressed in terms of the drift veloc-
ity of the charge carriers (vd) as td5d/vd , whered is the
detector thickness or maximum drift length. In the linear
region, the drift velocity is proportional to the applied elec-
tric field ~E! through the relationshipvd5mE, with mobility
~m! as the proportionality constant. Therefore, relatively
large electric fields are normally employed in radiation de-
tectors in order to maximize the drift velocity and minimize
the drift time within the detector. However, the application
of large electric fields also increases the leakage current den-
sity through the relationshipJ5sE, where the conductivity
~s! is the proportionality constant. High resistivity material
is, therefore, required. Resistivities greater than 1010V cm
are achieved commercially in CZT through the introduction
of a relatively large concentration of deep energy levels,
which partially ionize and pin the Fermi level near the
middle of the energy gap. This technique, known as compen-
sation, is an effective method of increasing the resistivity of
semiconductors plagued by shallow defect levels. However,
the same deep energy levels that improve the resistivity of
CZT can also trap free charge carriers, reducing the carrier
lifetime and degrading the detector performance. Thus, a fine

balance between compensation and trapping is required in
order to optimize the performance of radiation detectors
based on this material.

Compensation and trapping in detector-grade CZT has
been investigated using a number of techniques including
thermally stimulated conductivity~TSC!, thermoelectric
emission spectroscopy~TEES!, and thermoelectric voltage
spectroscopy~TEVS!.4–8 However, although several impor-
tant electron and hole traps have been identified in CZT, very
little is currently understood about the relative contribution
of individual traps to the charge carrier lifetimes.

In this manuscript we report on contactless thermally
stimulated lifetime~C-TSL! measurements in detector-grade
CZT using a pulsed laser microwave cavity perturbation
technique. The method has many similarities to TSC and
TEES except that carrier lifetime instead of current is mea-
sured during the thermal ionization of traps. The semicon-
ductor sample is first cooled to reduce the thermal energy of
carriers and the probability that trapped carriers will be ther-
mally ionized. Traps are then filled by creating electrons and
holes in the sample using a pulsed laser excitation source.
The sample temperature is then increased and carrier life-
times are repeatedly measured by monitoring the transient
decay in the material conductivity upon low level, pulsed
laser excitation. When the Fermi level crosses a trap level,
the charge state of the trap is changed~e.g., from a neutral to
ionized state!. The capture cross section for an ionized trap
will, in many cases, be orders of magnitude different than the
neutral trap, which can contribute significantly to the overall
transport process affecting the carrier lifetime.

II. EXPERIMENT

Figure 1 is a schematic diagram illustrating the basic
experimental configuration. A tunable solid-state yttrium–
iron–garnet~YIG! oscillator provides the microwave energy
with a frequency range of 4–8 GHz and a maximum power
output of 100 mW. The microwave energy is directed

a!Author to whom correspondence should be addressed; electronic mail:
gctepper@saturn.vcu.edu
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through a waveguide and enters through an adjustable aper-
ture into a cylindrical resonant cavity containing the semi-
conductor sample. The resonant frequency of the cavity is
determined by its size and by the dielectric constant of the
sample material and was approximately 6 GHz for the ex-
periments reported here. The cylindrical cavity, used in the
TE011 mode, was machined out of brass and was plated to
increase the quality factor.

A comprehensive treatment of transient microwave cav-
ity perturbation measurements has been reported previously
and will only briefly be reviewed here.9–11The change in the
quality factor and/or resonant frequency of the microwave
cavity upon photoexcitation of the semiconductor sample is
the basis for the technique. The dielectric loss (e9) is pro-
portional to the material conductivity and can be expressed
as

e95s/ve0 , ~1!

where s is the sample conductivity,v is the angular fre-
quency of the microwave radiation, ande0 is the permittivity
of free space. Under pulsed laser excitation, the semiconduc-
tor conductivity momentarily increases froms0 to s due
primarily to the generation of free charge carriers. Defining
the excess conductivity factor (Ds/s0), it can be shown,
assuming that for low level excitation the change in the reso-
nant frequency is negligible, that

Ds/s05$1/Q121/Qd%/$1/Qd21/Q0%, ~2!

whereQ0 , Qd , andQ1 are the quality factors of the empty,
sample loaded under dark and sample loaded under luminant
condition of the cavity, respectively.9 After the excitation is
removed, the conductivity of the sample and quality factor of
the cavity return to the unexcited values at a rate dependent
on the carrier lifetime. Thus, the carrier lifetime can be de-
termined by observing the time dependence of the quality

factor Q1 under pulsed laser excitation of the sample. How-
ever, for transient measurements it is difficult to determine
the value of the quality factor by the full width at half maxi-
mum of the resonant curve. It has been previously demon-
strated that one can determineQ from the normalized re-
flected microwave power at resonance,k, such that

Dk~ t !5SDs~ t !/s0 , ~3!

whereDk is the normalized change in the reflected micro-
wave power at resonance andS is the measurement
sensitivity.11 Thus, the effective carrier lifetime can be ob-
tained directly by observing the decay of the reflected micro-
wave signal after the removal of the excitation source. The
measurement sensitivity is known to depend on a variety of
parameters including the quality factor, the sample size, and
the cavity coupling factor. We have previously demonstrated
that the sensitivity can be optimized such that the absorption
of single high-energy photons can be detected in a semicon-
ductor using this method.12

The photoillumination in these experiments was pro-
vided by a pulsed Nd: yttrium–aluminum–garnet~YAG! la-
ser with a wavelength of 1064 nm and a pulse duration of
approximately 4 ns. The laser energy could be continuously
adjusted to a maximum of 90 mW. A 1-mm-diam circular
aperture was machined into the side of the cavity for the
photoillumination. The semiconductor sample was inserted
axially into the center of the cavity using a cylindrical BeO
rod. BeO is an electrical insulator and, therefore, creates neg-
ligible load to the cavity compared to the CZT sample. How-
ever, the thermal conductivity of BeO is quite high and the
sample could therefore be cooled to approximately 110 K by
placing the external end of the rod into a liquid nitrogen
reservoir without the need to introduce coolant directly into
the cavity. Condensation inside the cavity was avoided by
keeping the cavity under mechanical vacuum.

III. RESULTS

Figure 2 is a plot of the normalized reflected microwave
power versus time for the pulsed illumination of the CZT
sample at three different temperatures. The reflected micro-
wave signal intensity is a measure of the free charge carrier
density as a function of time and in general the signal decay
can be described mathematically by an infinite series of ex-
ponential functions with independent time constants. The de-
cay curves of Fig. 2 were fit with a least squares method to a
simple exponential function with time constant~t! as the
single adjustable parameter.

Figure 3 is a plot of carrier lifetime versus temperature
from 110 K to 300 K. The CZT sample was first placed in
the microwave cavity and cooled to 110 K. The sample was
then illuminated with 1064 nm laser light in order to fill the
traps. We have also used the 532 nm first harmonic for the
excitation, but have observed no significant change in the
results. Recently it has been reported that the optimum wave-
length for photoexcitation of CZT is 750–780 nm.4 There-
fore, we suspect that only partial trap filling is occurring in
our investigation. After the initial photoexcitation, the
sample temperature was increased and the carrier lifetime

TABLE I. Selected room temperature properties of cadmium zinc telluride.

Band gap
~eV!

Atomic
number

~Z!
Density
~g/cm3!

Hole
mobility
~cm2/V s!

Electron
mobility
~cm2/V s!

Hole
lifetime

~s!

Electron
lifetime

~s!

1.6 48/30/52 6 50–100 800–1200 1027 1026

FIG. 1. Schematic diagram of the microwave apparatus.
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was measured at discrete temperatures by monitoring the du-
ration of the reflected microwave signal upon pulsed laser
excitation. As illustrated in Fig. 3, the carrier lifetime de-
creased rapidly with increasing temperature from approxi-
mately 30ms at 110 K to 4ms at 160 K and then remained
relatively constant from 160 K to 300 K.

IV. DISCUSSION

The carrier lifetimes reported here represent an effective
lifetime (teff) and in general consist of a surface component
(ts) and a bulk component (tb) through the relationship

1/teff51/tg11/tb . ~4!

The surface component of the effective carrier lifetime in-
cludes important information on the diffusion coefficient~D!
which is related to the carrier mobility~m! and sample tem-
perature~T! through the relationshipD5mkT/q, wherek is

the Boltzmann constant andq is the unit charge. It is possible
to separate the bulk and surface components of the lifetime
by varying the sample thickness or excitation wavelength
and this would be an interesting follow-up to this preliminary
investigation. However, here we are primarily interested in
reporting on the temperature dependence of theeffectivecar-
rier lifetime but we do note that the room temperature effec-
tive lifetime value determined from our microwave method
is consistent with the bulk electron lifetime value reported in
Table I determined from conventional time-of-flight meth-
ods. This is indirect evidence that surface effects may be
negligible at the laser wavelength used in these experiments.

The sudden drop in carrier lifetime in CZT within a par-
ticular temperature range is consistent with the thermal ion-
ization of an electron or hole. The trap ionization tempera-
ture and the lower limit of the detrapping time can be
estimated from the lifetime versus temperature curve. From

FIG. 2. Normalized reflected microwave signal inten-
sity vs time at three different sample temperatures.

FIG. 3. Carrier lifetime vs temperature from 110–300
K.
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the data in Fig. 3, we estimate that the maximum trap acti-
vation temperature is 160 K. However, it will be necessary to
extend the C-TSL measurements to lower temperatures in
order to improve this estimate, and we are currently modify-
ing the experimental apparatus for lower temperature opera-
tion.

It is possible to qualitatively estimate the thermal ioniza-
tion energy,Et , from the C-TSL curve using the following
equation commonly used for thermally stimulated current
measurements:

Et5kTs ln$~cm* s tTs
4!/~Etb!%, ~5!

where

c5$4~6p3!1/2k3%/h3, ~6!

and Ts is the temperature at which the transition in the
C-TSL curve occurs,b is the heating rate,s t is the trap cross
section,m* is the effective mass, andh is Planck’s constant.

Figure 4 is a plot of the heating rate~b! versus tempera-
ture for these experiments. The sample was heated simply by
removing the liquid nitrogen from the external end of the
BeO rod. Initially the heating rate is high due to the large
temperature gradient along the sample rod. However, after a
few seconds the heating rate drops significantly and is ap-
proximately 1.5 K/s near the C-TSL transition temperature of
160 K. Using the effective mass for electrons in CdTe and a
trap cross section of 10215cm2 gives an ionization energy of
340 meV650 meV. Due to the logarithmic nature of Eq.~5!,
the primary uncertainty in our calculation of the trap ioniza-
tion energy comes from the uncertainty in the ionization tem-
peratureTs . Therefore, the value reported here forEt can be
interpreted as a qualitative estimate of the upper limit of the
trap ionization energy.

The carrier lifetime decreased from approximately 30 to
4 ms due to the thermal activation of the charge trap near 160
K. If the detrapping rate were fast compared to these carrier
lifetime values, the trap would not be expected to signifi-

cantly reduce the measured carrier lifetime. We therefore
place the minimum detrapping time in the 1026 s range.

The C-TSL measurements reported here depend on the
total carrier concentration and it is, therefore, difficult to
separate the contributions of electron and hole traps using
this method. It is possible to distinguish between electron
and hole traps using other techniques such as TEES or TEVS
and a recent investigation reports the presence of a partially
ionized dominant deep donor level in CZT that compensates
a smaller concentration of acceptor levels that may be shal-
low or deep.4 However, although our initial C-TSL measure-
ments are consistent with this model, further lifetime mea-
surements over a wider temperature range and on additional
samples will be necessary in order to correlate our results to
the trapping scheme in CZT.

Recent TSC and TEVS measurements of nine samples
from the same supplier of CdZnTe crystals showed three
electron traps common to all of the samples and deep elec-
tron and hole traps in most of the samples. The energies of
the measured electron traps were 77615, 184620, and 354
622 meV. These levels are consistent with the results of the
C-TSL technique. Figure 5 shows the TSC spectra from
three representative samples. Peaks due to the three electron
traps can be seen and a strong correlation between the radia-
tion detector performance and the peak intensity was ob-
served and this is reported in detail elsewhere.13

A potential advantage of the C-TSL technique is that the
lifetime measurements are obtained from a localized region
within the sample defined by the laser spot diameter, pen-
etration depth, and carrier diffusion. Therefore, it may be
possible to probe specific regions of a sample in order to
determine the degree of variation in the carrier lifetimes
within a material. We have probed several regions of the
CZT sample, but did not observe a significant variation in the
carrier lifetimes. However, we suspect that the relatively
large interaction volume probed in these initial experiments

FIG. 4. Heating rateb vs sample temperature.
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does not provide sufficient spatial resolution to detect these
variances.

V. CONCLUSIONS

Contactless thermally stimulated lifetime measurements
have been performed on detector-grade cadmium zinc tellu-
ride. This characterization method provides important infor-
mation on the relative contribution of individual trap levels
to the carrier lifetime. Our results provide evidence for the
existence of an important lifetime-limiting trap in CZT. The

maximum ionization energy of this trap is estimated to be
340 meV, and the minimum detrapping time is approxi-
mately 1026 s. Future investigations will include additional
C-TSL measurements at lower temperatures and a correla-
tion between C-TSL curves and detector spectroscopic per-
formance.
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due to three electron traps.
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