114 research outputs found

    Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors

    Get PDF
    International audienceAbstractObjective: Growth of white adipose tissue takes place in normal development and in obesity. A pool of adipose progenitors is responsible for the formation of new adipocytes and for the potential of this tissue to expand in response to chronic energy overload. However, factors controlling self-renewal of human adipose progenitors are largely unknown. We investigated the expression profile and the role of activin A in this process. Research Design and Methods: Expression of INHBA/activin A has been investigated in three types of human adipose progenitors. We then analyzed at the molecular level the function of activin A during human adipogenesis. We finally investigated the status of activin A in adipose tissues of lean and obese subjects and analyzed macrophage-induced regulation of its expression. Results: INHBA/activin A is expressed by adipose progenitors from various fat depots and its expression dramatically decreases as progenitors differentiate into adipocytes. Activin A regulates the number of undifferentiated progenitors. Sustained activation or inhibition of the activin A pathway impairs or promotes respectively adipocyte differentiation via C/EBPbeta-LAP and Smad2 pathway in an autocrine/paracrine manner. Activin A is expressed at higher levels in adipose tissue of obese patients compared to lean subjects. Indeed, activin A levels in adipose progenitors are dramatically increased by factors secreted by macrophages derived from obese adipose tissue. Conclusions: Altogether, our data show that activin A plays a significant role in human adipogenesis. We propose a model in which macrophages which are located in adipose tissue regulate adipose progenitor self-renewal through activin A

    Complement Factor H and Apolipoprotein E Participate in Regulation of Inflammation in THP-1 Macrophages

    Get PDF
    The alternative pathway (AP) of complement is constantly active in plasma and can easily be activated on self surfaces and trigger local inflammation. Host cells are protected from AP attack by Factor H (FH), the main AP regulator in plasma. Although complement is known to play a role in atherosclerosis, the mechanisms of its contribution are not fully understood. Since FH via its domains 5-7 binds apoliporotein E (apoE) and macrophages produce apoE we examined how FH could be involved in the antiatherogenic effects of apoE. We used blood peripheral monocytes and THP-1 monocyte/macrophage cells which were also loaded with acetylated low-density lipoprotein (LDL) to form foam cells. Binding of FH and apoE on these cells was analyzed by flow cytometry. High-density lipoprotein (HDL)-mediated cholesterol efflux of activated THP-1 cells was measured and transcriptomes of THP-1 cells using mRNA sequencing were determined. We found that binding of FH to human blood monocytes and cholesterol-loaded THP-1 macrophages increased apoE binding to these cells. Preincubation of fluorescent cholesterol labeled THP-1 macrophages in the presence of FH increased cholesterol efflux and cholesterol-loaded macrophages displayed reduced transcription of proinflammatory/proatherogenic factors and increased transcription of anti-inflammatory/anti-atherogenic factors. Further incubation of THP-1 cells with serum reduced C3b/iC3b deposition. Overall, our data indicate that apoE and FH interact with monocytic cells in a concerted action and this interaction reduces complement activation and inflammation in the atherosclerotic lesions. By this way FH may participate in mediating the beneficial effects of apoE in suppressing atherosclerotic lesion progression.Peer reviewe

    The extracellular matrix and insulin resistance

    Get PDF
    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Novel Pathway of Adipogenesis through Cross-Talk between Adipose Tissue Macrophages, Adipose Stem Cells and Adipocytes: Evidence of Cell Plasticity

    Get PDF
    INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes

    SPARC functions as an inhibitor of adipogenesis

    Get PDF
    Adipogenesis, a key step in the pathogenesis of obesity, involves extensive ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. Matricellular proteins regulate cell-cell and cell-ECM interactions. Evidence in vivo and in vitro indicates that the prototypic matricellular protein, SPARC, inhibits adipogenesis and promotes osteoblastogenesis. Herein we discuss mechanisms underlying the inhibitory effect of SPARC on adipogenesis. SPARC enhances the Wnt/β-catenin signaling pathway and regulates the expression and posttranslational modification of collagen. SPARC might drive preadipocytes away from the status of growth arrest and therefore prevent terminal differentiation. SPARC could also decrease WAT deposition through its negative effects on angiogenesis. Therefore, several stages of white adipose tissue accumulation are sensitive to the inhibitory effects of SPARC

    Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Get PDF
    Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P <0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E(-7)), and immune-related complications (e. g. Natural killer cell mediated cytotoxity, P = 3.8E(-5); B cell receptor signaling pathway, P = 7.2E(-5)). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis

    Interactions entre les préadipocytes et les macrophages au sein du tissu adipeux humain

    No full text
    Le tissu adipeux obèse produit davantage de facteurs inflammatoires notamment par sa fraction stroma vasculaire incluant les macrophages. En présence de facteurs sécrétés par les macrophages, les préadipocytes humains développent, outre une altération de leur différenciation, un état inflammatoire ainsi que des capacités accrues à proliférer et à migrer. Ces modifications phénotypiques des préadipocytes s accompagnent d un profond remodelage de leur matrice extracellulaire. Des gènes d intérêt potentiel dans l obésité ont également été identifiés : CCL5 qui jouerait un rôle dans l accumulation et la survie des macrophages du tissu adipeux et l inhibine beta A dont nous montrons l activité profibrotique dans les préadipocytes. Ainsi, au cours de l obésité, le tissu adipeux serait le site d interactions majeures entre les préadipocytes et les macrophages, contribuant probablement aux perturbations morphologiques et fonctionnelles de ce tissu, à l instar de l apparition de fibrose.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes.: Human adipogenesis regulation by macrophages

    No full text
    Obesity is considered a chronic low-grade inflammatory state. The white adipose tissue produces a variety of inflammation-related proteins whose expression is increased in obese subjects. The nonadipose cell fraction, which includes infiltrated macrophages, is a determinant source of inflammation-related molecules within the adipose tissue. Our working hypothesis is that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Human primary preadipocytes were then differentiated in the presence of conditioned media obtained from macrophages differentiated from blood monocytes. Preadipocytes treated by macrophage-conditioned medium displayed marked reduction of adipogenesis as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic and lipogenic markers. In addition to this effect, the activation of macrophages by lipopolysaccharides stimulated nuclear factor kappaB signaling, increased gene expression and release of proinflammatory cytokines and chemokines, and induced preadipocyte proliferation. This phenomenon was associated with increased cyclin D1 gene expression and maintenance of the fibronectin-rich matrix. Anti-TNFalpha neutralizing antibody inhibits the inflammatory state of preadipocytes positioning TNFalpha as an important mediator of inflammation in preadipocytes. Strikingly, conditioned media produced by macrophages isolated from human adipose tissue exerted comparable effects with activated macrophages, i.e. decreased adipogenesis and increased inflammatory state in the preadipocytes. These data show that macrophage-secreted factors inhibit the formation of mature adipocytes, suggesting possible role in limiting adipose tissue expansion in humans
    corecore