8 research outputs found

    Cardioprotective Effects of a Nonsteroidal Mineralocorticoid Receptor Blocker, Esaxerenone, in Dahl Salt-Sensitive Hypertensive Rats

    No full text
    We investigated the effects of esaxerenone, a novel, nonsteroidal, and selective mineralocorticoid receptor blocker, on cardiac function in Dahl salt-sensitive (DSS) rats. We provided 6-week-old DSS rats a high-salt diet (HSD, 8% NaCl). Following six weeks of HSD feeding (establishment of cardiac hypertrophy), we divided the animals into the following two groups: HSD or HSD + esaxerenone (0.001%, w/w). In survival study, all HSD-fed animals died by 24 weeks of age, whereas the esaxerenone-treated HSD-fed animals showed significantly improved survival. We used the same protocol with a separate set of animals to evaluate the cardiac function by echocardiography after four weeks of treatment. The results showed that HSD-fed animals developed cardiac dysfunction as evidenced by reduced stroke volume, ejection fraction, and cardiac output. Importantly, esaxerenone treatment decreased the worsening of cardiac dysfunction concomitant with a significantly reduced level of systolic blood pressure. In addition, treatment with esaxerenone in HSD-fed DSS rats caused a reduced level of cardiac remodeling as well as fibrosis. Furthermore, inflammation and oxidative stress were significantly reduced. These data indicate that esaxerenone has the potential to mitigate cardiac dysfunction in salt-induced myocardial injury in rats

    Anomalous Dielectric Behavior of a Pb/Sn Perovskite: Effect of Trapped Charges on Complex Photoconductivity

    No full text
    Organic–inorganic metal halide perovskites (MHPs) exhibit prominent electronic and optical properties benefiting the performance of solar cells and light-emitting diodes. However, the dielectric properties of these materials have remained poorly understood, despite probably influencing delayed charge recombination and device capacitance. Herein, we characterize the unprecedented dielectric behavior of MHPs comprising methylammonium cations, Pb/Sn as metals, and Br/I as halides using time-resolved microwave conductivity (TRMC) measurements. At specific compositions, the above MHPs exhibit negative real and positive imaginary photoconductivities, the polarities of which are opposite those observed for conventional photogenerated charge carriers. Comparing the observed TRMC kinetics with that of inorganic perovskites (SrTiO<sub>3</sub> and BaTiO<sub>3</sub>) and characterizing its dependence on temperature, frequency, and near-infrared second push pulse, we conclude that the above behavior is due to the trapping of polaronic holes/electrons by oriented dipoles of organic cations, which opens a hitherto unexplored route to the dynamical control of dielectric permittivity by photoirradiation
    corecore