1,133 research outputs found

    Q&A: How does jasmonate signaling enable plants to adapt and survive?

    Get PDF
    Jasmonates (JAs) are a class of plant hormones that play essential roles in response to tissue wounding. They act on gene expression to slow down growth and to redirect metabolism towards producing defense molecules and repairing damage. These responses are systemic and have dramatic impacts on yields, making JAs a very active research area. JAs interact with many other plant hormones and therefore also have essential functions throughout development, notably during plant reproduction, leaf senescence and in response to many biotic and abiotic stresses

    Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA

    Get PDF
    In Arabidopsis, the population of stem cells present in young flower buds is lost after the production of a fixed number of floral organs. The precisely timed repression of the stem cell identity gene WUSCHEL (WUS) by the floral homeotic protein AGAMOUS (AG) is a key part of this process. In this study, we report on the identification of a novel input into the process of floral stem cell regulation. We use genetics and chromatin immunoprecipitation assays to demonstrate that the bZIP transcription factor PERIANTHIA (PAN) plays a role in regulating stem cell fate by directly controlling AG expression and suggest that this activity is spatially restricted to the centermost region of the AG expression domain. These results suggest that the termination of floral stem cell fate is a multiply redundant process involving loci with unrelated floral patterning functions

    Plant hormone signaling during development: insights from computational models

    Get PDF
    International audienceRecent years have seen an impressive increase in our knowledge of the topology of plant hormone signaling networks. The complexity of these topologies has motivated the development of models for several hormones to aid understanding of how signaling networks process hormonal inputs. Such work has generated essential insights into the mechanisms of hormone perception and of regulation of cellular responses such as transcription in response to hormones. In addition, modeling approaches have contributed significantly to exploring how spatio-temporal regulation of hormone signaling contributes to plant growth and patterning. New tools have also been developed to obtain quantitative information on hormone distribution during development and to test model predictions, opening the way for quantitative understanding of the developmental roles of hormones. ⺠Plant hormone signaling pathways exhibit complex topologies. ⺠Computational models predict the dynamics of hormone signaling. ⺠Modeling provides key insights on the role of hormones during growth and development. ⺠New tools allow for a quantitative understanding of hormone signaling

    Modeling of the signal of a resistive soot sensor, influence of the soot nature and of the polarization voltage

    Get PDF
    International audienceResistive soot sensors capable of measuring the mass concentration of particles in an exhaust pipe have been developed in a previous work. In particular, it has been shown that these sensors have an optimal sensitivity for a certain polarization voltage depending on the nature of the particles.This work shows that this effect can be explained by an equilibrium between the creation of soot bridges between the two collecting electrodes and their destruction initiated by Joule effect due to the polarization voltage. Based on this assumption, a model is proposed to predict the load curve (response versus time) of the sensor. In addition, the high frequency sampling of the sensor response has revealed some jumps of the sensor response (electrical conductance), which are exploited through a statistical approach to obtain additional information on the nature of the collected particles

    Influence of key parameters on the response of a resistive soot sensor

    Get PDF
    International audienceThis paper is a comprehensive study dealing with the parameters that influence the response of a resistive soot sensor which was developed for Diesel Particulate Filter (DPF) failure detection in a past project. From the conductance measurement between two Pt electrodes, and a regeneration strategy, this kind of sensor can provide the weight concentration of particulate matter (PM). In this study, we have characterized and determined the key parameters such as the PM distribution size and the polarization voltage between the electrodes that could influence the sensor response. First results show that the sensor response strongly depends on the polarization voltage applied between the two electrodes

    Modelling the influence of dimerisation sequence dissimilarities on the auxin signalling network

    Get PDF
    International audienceBackground: Auxin is a major phytohormone involved in many developmental processes by controlling gene expression through a network of transcriptional regulators. In Arabidopsis thaliana, the auxin signalling network is made of 52 potentially interacting transcriptional regulators, activating or repressing gene expression. All the possible interactions were tested in two-way yeast-2-hybrid experiments. Our objective was to characterise this auxin signalling network and to quantify the influence of the dimerisation sequence dissimilarities on the interaction between transcriptional regulators.Results: We applied model-based graph clustering methods relying on connectivity profiles between transcriptional regulators. Incorporating dimerisation sequence dissimilarities as explanatory variables, we modelled their influence on the auxin network topology using mixture of linear models for random graphs. Our results provide evidence that the network can be simplified into four groups, three of them being closely related to biological groups. We found that these groups behave differently, depending on their dimerisation sequence dissimilarities, and that the two dimerisation sub-domains might play different roles.Conclusions: We propose here the first pipeline of statistical methods combining yeast-2-hybrid data and protein sequence dissimilarities for analysing protein-protein interactions. We unveil using this pipeline of analysis the transcriptional regulator interaction modes

    Structural and antimicrobial properties of human pre-elafin/trappin-2 and derived peptides against Pseudomonas aeruginosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen <it>P. aeruginosa</it>. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against <it>P. aeruginosa</it>.</p> <p>Results</p> <p>We show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with <it>P. aeruginosa </it>and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA <it>in vitro </it>and attenuate the expression of some <it>P. aeruginosa </it>virulence factors, namely the biofilm formation and the secretion of pyoverdine.</p> <p>Conclusions</p> <p>The N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against <it>P. aeruginosa</it>. Our results rather suggest that pre-elafin/trappin-2 and elafin, but not cementoin, possess the ability to modulate the expression of some <it>P.aeruginosa </it>virulence factors, possibly through acting on intracellular targets.</p

    Analyzing perturbations in phyllotaxis of Arabidopsis thaliana

    Get PDF
    International audienceVascular plants produce new organs at the tip of the stem in a very organized fashion. This patterning process occurs in small groups of stem cells, the so-called shoot apical meristems (SAM), and generates regular patterns called phyllotaxis. The phyllotaxis of the model plant Arabidopsis thaliana follows a Fibonacci spiral, the most frequent phyllotactic pattern found in nature. In this phyllotactic mode, single organs are initiated successively at a divergence angle from the previous organ close to 137.5°, the golden angle. Cytokinins, a class of plant hormones, is involved in the control of phyllotaxis but its role has remained elusive (Vernoux et al., 2010). By analyzing the expression of several cytokinin signaling regulators in the meristem, we found that the pseudo-phosphotransfer protein AHP6 is expressed specifically during early organogenesis (unpublished results). AHP6 has been demonstrated to act as an inhibitor of cytokinin signaling (Mahonen et al., 2006) and we further observed a destabilization of phyllotaxis in ahp6 null mutant. To understand how AHP6 acts in the control of Arabidopsis phyllotaxis, we analyzed sequences of divergence angles in both wild-type and ahp6 mutant plants. We thus measured the divergence angle between successive flowers on a stem from the base (older flowers) to the top (younger flowers)
    corecore