13 research outputs found

    Simulation of the KATRIN Source Plasma using Monte Carlo and Particle in Cell Methods

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims to determine the effective electron anti-neutrino mass with a sensitivity down to 0.2 eV/c2^2 (90\% CL) through spectroscopy of gaseous tritium β\beta-decay in the endpoint region. This challenging goal can only be reached through a precise examination of all systematic effects of the experiment. One of these effects is caused by a plasma in the highly luminous windowless gaseous tritium source. The plasma is generated by beta decay, subsequent partial ionization of the surrounding tritium gas. It produces an ab initio inhomogeneous potential throughout the source, which can change the shape of the measured electron spectrum. The exterior experimental conditions generate unconventional plasma conditions resulting in a highly magnetized, partly collisional, multi-species, non-thermal (with thermal components), bound plasma. The combination of these properties makes an analytical description impossible. This thesis therefore focuses on the development and results of a new model of the plasma, using an iterative approach between the newly developed Monte Carlo code KARL and the particle in cell code ACRONYM

    Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    Get PDF
    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing

    LAPIS is a fast web API for massive open virus sequencing data

    No full text
    Background Recent epidemic outbreaks such as the SARS-CoV-2 pandemic and the mpox outbreak in 2022 have demonstrated the value of genomic sequencing data for tracking the origin and spread of pathogens. Laboratories around the globe generated new sequences at unprecedented speed and volume and bioinformaticians developed new tools and dashboards to analyze this wealth of data. However, a major challenge that remains is the lack of simple and efficient approaches for accessing and processing sequencing data. Results The Lightweight API for Sequences (LAPIS) facilitates rapid retrieval and analysis of genomic sequencing data through a REST API. It supports complex mutation- and metadata-based queries and can perform aggregation operations on massive datasets. LAPIS is optimized for typical questions relevant to genomic epidemiology. Using a newly-developed in-memory database engine, it has a high speed and throughput: between 25 January and 4 February 2023, the SARS-CoV-2 instance of LAPIS, which contains 14.5 million sequences, processed over 20 million requests with a mean response time of 411 ms and a median response time of 1 ms. LAPIS is the core engine behind our dashboards on genspectrum.org and we currently maintain public LAPIS instances for SARS-CoV-2 and mpox. Conclusions Powered by an optimized database engine and available through a web API, LAPIS enhances the accessibility of genomic sequencing data. It is designed to serve as a common backend for dashboards and analyses with the potential to be integrated into common database platforms such as GenBank.ISSN:1471-210

    Insulin feedback action on pancreatic beta-cell function

    Get PDF
    Pancreatic beta-cell function is essential for the regulation of glucose homeostasis and its impairment leads to diabetes mellitus. Besides glucose, the major nutrient factor, inputs from neural and humoral components and intraislet cell-cell communication act together to guarantee an appropriate pancreatic beta-cell function. Data obtained over the last 5 years in several laboratories have revitalized a controversial concept, namely the autocrine feedback action of secreted insulin on beta-cell function. While, historically, insulin was suggested to exert a negative effect on beta-cells, recent data provide evidence for a positive role of insulin in transcription, translation, ion flux, insulin secretion and beta-cell survival

    Alternative IGF-Related Receptors

    No full text

    First operation of the KATRIN experiment with tritium

    Get PDF
    The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of β β -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 0.2 eV (90% 90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019

    Recent Applications of Electron Spectroscopy

    No full text
    corecore