157 research outputs found

    Association of Serum 25-Hydroxyvitamin D Levels with Markers for Metabolic Syndrome in the Elderly: A Repeated Measure Analysis

    Get PDF
    The purpose of current study was to investigate associations of serum 25-hydroxyvitamin D (OHVD) levels with markers for metabolic syndrome in elderly Koreans. We conducted a panel study on 301 individuals over 60 yr old in Seoul, Korea, and repeatedly measured serum OHVD, glucose, insulin, and lipid levels. Mixed effect model and generalized estimating equations were used to investigate relationships between serum OHVD levels with marker levels for metabolic syndrome and each of its categories. Of all subjects, 76.6% were vitamin D deficient (< 50 nM) and 16.9% were insufficient (< 75 nM). Inverse association was demonstrated between serum OHVD levels and insulin (P = 0.004), triglyceride (P = 0.023) and blood pressure (systolic blood pressure: P = 0.002; diastolic blood pressure: P < 0.001). Vitamin D deficiency was found to increase risk of 'hypertriglyceridemia' category of metabolic syndrome (odds ratio: 1.73, 95% confidence interval: 1.13-2.66). In conclusion, we found from our repeated measure analysis that decreasing serum OHVD levels are associated with increasing insulin resistance, increasing serum triglyceride levels and increasing blood pressure in elderly Koreans, and confirmed on the risk of 'hypertriglyceridemia' in vitamin D deficient subjects

    Prevailing vitamin D status influences mitochondrial and glycolytic bioenergetics in peripheral blood mononuclear cells obtained from adults

    Get PDF
    © 2016 The Authors. Background Circulating peripheral blood mononuclear cells (PBMCs) are exposed to metabolic and immunological stimuli that influence their functionality. We hypothesized that prevailing vitamin D status [25(OH)D] would modulate the bioenergetic profile of PBMCs derived from humans. Materials and methods 38 participants (16 males, 22 females) ranging in body fat from 14–51% were studied. PBMCs were isolated from whole blood, counted and freshly seeded for bioenergetic analysis using the Seahorse XFe96 flux analyser. Whole body energy metabolism via indirect calorimetry, body composition by dual-energy X-ray absorptiometry, and relevant clinical biochemistry were measured. Data was analysed based on 25(OH)D cut-offs of &lt;50 nmol/L (Group 1, n=12), 50–75 nmol/L (Group 2, n=15) and =75 nmol/L (Group 3, n=11). A multivariate general linear model adjusting for age, fat mass, fat-free mass, parathyroid hormone and insulin sensitivity was used. Results There were significant differences in cellular mitochondrial function between groups. Group 1 had significantly higher basal respiration (p=0.001), non-mitochondrial respiration (p=0.009), ATP production (p=0.001), proton leak (p=0.018), background glycolysis (p=0.023) and glycolytic reserve (p=0.039) relative to either Group 2 or Group 3; the latter two did not differ on any measures. There were no differences in bioenergetic health index (BHI), resting metabolic rates and systemic inflammatory markers between groups. Conclusions Inadequate vitamin D status adversely influenced bioenergetic parameters of PBMCs obtained from adults, in a pattern consistent with increased oxidative metabolism and activation of these cells

    Over-expression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy

    Get PDF
    ObjectiveThe Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused upon loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofiber size and function, and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo, before exploring the importance of VDR expression upon muscle hypertrophy in humans.MethodsWistar rats underwent in vivo electrotransfer (IVE) to over-express the VDR in Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20-wks resistance exercise training, with body composition and transcriptomic analysis.ResultsMuscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area i.e. hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling reflecting translational efficiency (e.g. mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodeling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were up-regulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training.ConclusionVDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and up-regulation of ECM remodelling related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogs

    Low free 25-hydroxyvitamin D and high vitamin D binding protein and parathyroid hormone in obese Caucasians. A complex association with bone?

    Get PDF
    Background Studies have shown altered vitamin D metabolism in obesity. We assessed differences between obese and normal-weight subjects in total, free, and bioavailable 25-hydroxyvitamin D (25(OH) D, 25(OH) D-Free, and 25(OH) D-Bio, respectively), vitamin D binding protein (DBP), parathyroid hormone (PTH) and bone traits. Methods 595 37-47-year-old healthy Finnish men and women stratified by BMI were examined in this cross-sectional study. Background characteristic and intakes of vitamin D and calcium were collected. The concentrations of 25(OH) D, PTH, DBP, albumin and bone turnover markers were determined from blood. 25(OH) D-Free and 25(OH) D-Bio were calculated. pQCT was performed at radius and tibia. Results Mean +/- SE (ANCOVA) 25(OH) D-Free (10.8 +/- 0.6 vs 12.9 +/- 0.4 nmol/L; P = 0.008) and 25(OH) DBio (4.1 +/- 0.3 vs 5.1 +/- 0.1 nmol/L; P = 0.003) were lower in obese than in normal-weight women. In men, 25(OH) D (48.0 +/- 2.4 vs 56.4 +/- 2.0 nmol/L, P = 0.003), 25(OH) D-Free (10.3 +/- 0.7 vs 12.5 +/- 0.6 pmol/L; P = 0.044) and 25(OH) D-Bio (4.2 +/- 0.3 vs 5.1 +/- 0.2 nmol/L; P = 0.032) were lower in obese. Similarly in all subjects, 25(OH) D, 25(OH) D-Free and 25(OH) D-Bio were lower in obese (P Conclusions The associations between BMI and 25(OH) D, 25(OH) D-Free, and 25(OH) D-Bio, DBP, and PTH suggest that obese subjects may differ from normal-weight subjects in vitamin D metabolism. BMI associated positively with trabecular bone traits and CSI in our study, and slightly negatively with cortical bone traits. Surprisingly, there was a negative association of free and bioavailable 25(OH) D and some of the bone traits in obese women.Peer reviewe

    The Association of Vitamin D with Metabolic Disorders Underlying Type 2 Diabetes

    No full text
    Emerging evidence suggests that vitamin D may be associated with type 2 diabetes (T2DM), however current data are inconsistent regarding metabolic disorders underlying T2DM. The objectives of this thesis were to investigate the association of vitamin D with the primary pathophysiological disorders of type 2 diabetes: namely insulin resistance (IR) and beta (β)-cell dysfunction, and the metabolic syndrome (MetS). All studies included individuals participating in the PROspective Metabolism and ISlet cell Evaluation (PROMISE) cohort study, comprising 712 subjects 30 years and older, and at risk of T2DM at baseline. Serum 25-hydroxyvitamin D [25(OH)D] was measured to assess vitamin D nutritional status. Validated oral glucose tolerance test derived indices for IR and β-cell function were calculated. In the first cross-sectional study, multivariate linear regression analyses indicated a significant inverse association of serum 25(OH)D with IR (β=-0.003, p=0.007) and a significant positive association of 25(OH)D with β-cell function (β=0.004, p=0.03) at the baseline PROMISE clinic visit (n=712). In another cross-sectional study also conducted using data from the baseline PROMISE clinic visit, higher 25(OH)D was found to be significantly associated with a reduced presence of the MetS after multivariate adjustment (OR=0.76, 95% CI 0.62-0.93). Low serum 25(OH)D was also significantly associated with various MetS components. In light of the findings in the first cross-sectional study, the third study examined prospective associations of baseline 25(OH)D with 3-year follow-up IR and β-cell function (n=489). Although baseline 25(OH)D was not significantly associated with follow-up IR, a significant positive association of baseline 25(OH)D with β-cell function at follow-up was observed (β=0.005, p=0.015). Lastly, in a longitudinal substudy (n=127), seasonal changes in 25(OH)D over 2.5 years did not significantly affect changes in IR and β-cell function. In conclusion, results indicated that baseline serum 25(OH)D was cross-sectionally related to IR, β-cell function and the MetS, and was prospectively related to β-cell function at the 3-year follow-up. In addition, seasonal changes in 25(OH)D do not adversely affect IR and β-cell function over time. These findings suggest a potential role for higher 25(OH)D levels in reducing diabetes risk, although additional longitudinal studies are warranted.Ph

    In patients with type 2 diabetes, which GLP-1 receptor agonist results in the greatest HbA1C reduction?

    No full text
    corecore