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Abstract

Background

Studies have shown altered vitamin D metabolism in obesity. We assessed differences

between obese and normal-weight subjects in total, free, and bioavailable 25-hydroxyvita-

min D (25(OH)D, 25(OH)DFree, and 25(OH)DBio, respectively), vitamin D binding protein

(DBP), parathyroid hormone (PTH) and bone traits.

Methods

595 37-47-year-old healthy Finnish men and women stratified by BMI were examined in this

cross-sectional study. Background characteristic and intakes of vitamin D and calcium were

collected. The concentrations of 25(OH)D, PTH, DBP, albumin and bone turnover markers

were determined from blood. 25(OH)DFree and 25(OH)DBio were calculated. pQCT was per-

formed at radius and tibia.

Results

Mean±SE (ANCOVA) 25(OH)DFree (10.8±0.6 vs 12.9±0.4 nmol/L; P = 0.008) and 25(OH)

DBio (4.1±0.3 vs 5.1±0.1 nmol/L; P = 0.003) were lower in obese than in normal-weight

women. In men, 25(OH)D (48.0±2.4 vs 56.4±2.0 nmol/L, P = 0.003), 25(OH)DFree (10.3

±0.7 vs 12.5±0.6 pmol/L; P = 0.044) and 25(OH)DBio (4.2±0.3 vs 5.1±0.2 nmol/L; P =

0.032) were lower in obese. Similarly in all subjects, 25(OH)D, 25(OH)DFree and 25(OH)

DBio were lower in obese (P<0.001). DBP (399±12 vs 356±7mg/L, P = 0.008) and PTH

(62.2±3.0 vs 53.3±1.9 ng/L; P = 0.045) were higher in obese than in normal-weight
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http://www.livochhalsa.fi/ and Alfred Kordelin

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/157587531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1371/journal.pone.0192596
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192596&domain=pdf&date_stamp=2018-02-28
https://doi.org/10.1371/journal.pone.0192596
https://doi.org/10.1371/journal.pone.0192596
http://creativecommons.org/licenses/by/4.0/
http://www.aka.fi/
https://www.helsinki.fi/
https://skr.fi/
http://www.livochhalsa.fi/


women. In all subjects, PTH and DBP were higher in obese (P = 0.047and P = 0.004,

respectively). In obese women, 25(OH)D was negatively associated with distal radius

trabecular density (R2 = 0.089, P = 0.009) and tibial shaft cortical strength index (CSI)

(R2 = 0.146, P = 0.004). 25(OH)DFree was negatively associated with distal radius CSI

(R2 = 0.070, P = 0.049), radial shaft cortical density (CorD) (R2 = 0.050, P = 0.045), and

tibial shaft CSI (R2 = 0.113, P = 0.012). 25(OH)DBio was negatively associated with distal

radius CSI (R2 = 0.072, P = 0.045), radial shaft CorD (R2 = 0.059, P = 0.032), and tibial

shaft CSI (R2 = 0.093, P = 0.024).

Conclusions

The associations between BMI and 25(OH)D, 25(OH)DFree, and 25(OH)DBio, DBP, and

PTH suggest that obese subjects may differ from normal-weight subjects in vitamin D

metabolism. BMI associated positively with trabecular bone traits and CSI in our study, and

slightly negatively with cortical bone traits. Surprisingly, there was a negative association of

free and bioavailable 25(OH)D and some of the bone traits in obese women.

Introduction

Obesity is a global problem that occurs concomitantly with many other diseases such as insulin

resistance and metabolic syndrome. Vitamin D deficiency is prevalent worldwide and has

been suggested to be associated with many illnesses, including cancer, autoimmune diseases,

hypertension, metabolic syndrome and diabetes [1–4].

Studies have shown that obese individuals have lower serum 25-hydroxyvitamin D concen-

trations (25(OH)D) than normal weight individuals [5–7]. Wortsman et al. concluded that

the observed association between vitamin D insufficiency and obesity is likely attributable to

decreased bioavailability of vitamin D3 from the skin and dietary sources because of its deposi-

tion in body fat compartments [5]. Also decreased exposure to sunlight because of limited

mobility and negative feedback from elevated 1,25-hydroxyvitamin D (1,25(OH)2D3) and

PTH concentrations on hepatic synthesis of 25(OH)D have been proposed as possible reasons

for lower 25(OH)D concentrations among obese people [8]. PTH is a key regulator of calcium

balance in the body and according to literature the serum PTH concentration may rise when

25(OH)D values fall below 40–60 nmol/L [9]. Increased serum PTH causes an increase of

bone turnover [10].

25(OH)D is transported bound to vitamin D binding protein (DBP) in circulation. DBP

transports 25(OH)D from the liver to the kidneys and other tissues and binds 85–90% of the

total circulating 25(OH)D and 85% of the total circulating 1,25(OH)2D3. Albumin and lipo-

proteins bind the remaining 15%, but with a lower affinity. Less than 1% of the vitamin D

metabolites are free in circulation [11]. DBP is suggested to also have a role in bone formation.

In its deglycosylated form, DBP can act as a macrophage activating factor and produce mor-

phological changes in osteoclasts and also activate them, which is correlated with enhanced

bone resorption [12]. DBP has an important role in binding with 25(OH)D and 1,25(OH)D as

well as in regulating their concentrations and functions.

According to the free hormone hypothesis only hormones that are not bound to transport-

ing proteins can enter the cells and have actions there [13]. 25(OH)D is commonly known to

enter renal cells in a 25(OH)D-DBP complex via a megalin-mediated receptor. However, most
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other tissues are exposed to free 25(OH)D (25(OH)DFree) or bioavailable (free+albumin

bound) 25(OH)D (25(OH)DBio). There has been discussion whether these forms could be bet-

ter markers of vitamin D status [14–16]. Both the concentration of DBP and the affinity of 25

(OH)D to DBP influence the concentrations of 25(OH)DFree and 25(OH)DBio.

As 25(OH)D is low in obese subjects, one could expect that this would influence bone

health negatively. Yet, studies have shown the reverse: a high BMI correlates positively with

areal bone mineral density (BMD) [17]. It is a common notion that obesity is associated with

stronger bones and prevents osteoporosis and fractures, hip fractures in particular but not

upper extremity fractures [18]. Besides additional loading because of greater body weight on

the weight-bearing skeleton, adipose tissue is likely to produce more estrogen which, in turn,

has a major impact on female skeleton in particular [19]. Excess weight in adolescence is

known to be associated with larger bone cross-section and to modulate also BMD in adulthood

[20]. Apparently, physical activity during adolescence and later in life played a role in this

respect. It is, however, recalled here that the body weight per se is not the major determinant

of loading, but the intensity and amount of physical activity is. When the amount of excess

body is compared to activity-induced forces corresponding to multiples of body weight [21],

the role of static body weight becomes secondary. Therefore it is important to study associa-

tions in skeletal sites that are affected and not affected by habitual loading.

To our knowledge, the direct association between the free forms (25(OH)DFree and 25(OH)

DBio) and bone traits in obese subjects has not been studied. The purpose of this study was to

explore the association between obese, overweight and normal-weight Finnish women and

men in total 25(OH)D, 25(OH)DFree, 25(OH)DBio, DBP, and PTH concentrations. In addition,

we investigated whether a link exists between serum 25(OH)D, 25(OH)DFree, and 25(OH)DBio

concentrations and skeletal status of weight-bearing and non-weight bearing bones as mea-

sured with peripheral quantitative computed tomography (pQCT) and biochemical markers

of bone metabolism.

Materials and methods

Ethics statement

All subjects gave their written informed consent to procedures that were conducted in accord

with the Helsinki Declaration. The study protocol was approved by the Helsinki Uusimaa Hos-

pital District Ethics Committees.

Study population

The population-based study was conducted in January-May 2010 (blood sampling in January

or March and pQCT-measurements in January-May) and was performed in the Helsinki area

(60˚N). The subjects comprised of 37- to 47-year-old Caucasian females and males. Recruit-

ment and the study protocol are described in detail elsewhere [22]. Pregnant women were

excluded from the study. The total number of recruited participants for the first phase i.e.

blood sampling was 678 and of these, 653 participated in the second phase i.e. pQCT measure-

ments. Morbidly obese subjects (BMI� 40) were not included in the analyses (N = 14). In the

25(OH)D, PTH and DBP analyses 58 participants were not included due to incomplete data,

or frequent sunbed use (> 10 times during 2008–2010). In pQCT-analysis, the women who

reported that their menstruation had ended permanently, were excluded. Unfortunately we

did not have information if they were menopausal. Also subjects with earlier history of eating

disorder or medication affecting calcium or bone metabolism were excluded. The total num-

ber of subjects included in the pQCT-analysis was 554.
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Dietary intake and background data collection

The dietary intakes of vitamin D and calcium during the preceding month were evaluated

using a validated Food Frequency Questionnaire covering over 70 foods [23]. The subjects

completed a questionnaire on medical history, medications and overall health, use of vitamin

D and calcium supplements, and physical activity (expressed as weekly minutes engaged in

supervised and unsupervised exercises). Holidays spent in sunny locations during winter

2009–2010, from November 2009 to January 2010 or from November 2009 to March 2010

(depending on the time of the blood sampling), served as a measure of sunshine exposure.

Sunny locations were defined as locations with a possibility for exposure to UV-irradiation.

Smoking was evaluated as pack years and it was calculated by multiplying the number of packs

of cigarettes smoked per day by the number of years the person has smoked. Weight and

height were measured in light clothing without shoes, and BMI was calculated according to

the following formula: weight in kilograms divided by the square of the height in meters (kg/

m2). Subject were classified according to their BMI as normal-weight (18.5–24.9 kg/m2), over-

weight (25–29.9 kg/m2), or obese (30–39.5 kg/m2) [24].

Biochemistry

Twelve-hour fasting blood samples were collected on the first visit. All samples were

obtained between 7:30 and 9:15 a.m., and serum was separated by centrifugation and stored

immediately after sampling at −20˚C or −70˚C until analysis. Blood samples were analyzed

in one batch in each analysis. Serum S-25(OH)D, albumin and PTH concentrations were

analyzed at the Department of Food and Environmental Sciences, University of Helsinki, in

2010. Serum albumin was analyzed by a photometric method by Konelab20 automatic ana-

lyzer (Thermo Clinical Labsystems, Espoo, Finland). Inter and intra coefficient of variations

(CV%) were <4.6% for the above-mentioned analyses. Serum 25(OH)D concentrations were

analyzed by using an IDS enzyme immunoassay kit (Immunodiagnostics Systems Ltd., Bol-

don, UK). Inter and intra CV%s were 2.7% and 3.2%, respectively. At the time that the sam-

ples were analyzed, the laboratory was in the process of achieving the Vitamin D External

Quality Assessment Scheme certificate, DEQAS (deqas.kpmd.co.uk/), for ensuring repro-

ducibility of analyses. The laboratory received the DEQAS proficiency certificate for this

method in 2012. Serum PTH concentrations were analyzed by using an immunolumines-

cence-based method by Immulite1000 (Siemens Healthcare Diagnostics, NY, USA). Inter

CV% was 8.0% and intra CV% <5.5%. Serum intact pro-collagen type I amino-terminal

propeptide (PINP) and serum collagen type 1 cross-linked C-terminal telopeptide (CTX)

were analyzed by using an IDS-iSYS Multidiscipline Automated Analyzer (Immunodiagnos-

tic Systems Ltd., Bolton, UK) at the NordLab Oulu and at the Department of Clinical

Chemistry of the University of Oulu in 2012. For both assays, intra CV% was <5.3% and

inter CV% <2.9%. Total serum osteocalcin was analyzed with a two-site immunoassay-

method based on monoclonal antibodies at the Department of Cell Biology and Anatomy,

Institute of Biomedicine, University of Turku, Turku, Finland in 2012 described in detail

previously [25, 26].

DBP analysis

DBP concentrations were measured from plasma samples using a commercially available

enzyme-linked immunosorbent assay (ELISA; Immundiagnostik AG, Bensheim, Germany) at

the Department of Food and Environmental Sciences, University of Helsinki in 2013. This

method uses polyclonal DBP antibodies. This enzyme immunoassay is a sandwich assay for
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the quantitative determination of DBP in serum, plasma and urine samples. The wells of the

microtiter plate are coated with polyclonal anti-DBP antibodies.

Calculation of 25(OH)DFree and 25(OH)DBio

Calculation of 25(OH)DFree was performed with a previously published equation [11,16]. T

and F are the total and free vitamin D concentrations, respectively, and KALB and KDBP are

the affinity constants for 25(OH)D with albumin and DBP. The affinity constant used for albu-

min was 6 x 105 and for DBP 7 x 108

½F� ¼¼
ðTÞ

ð1þ KALBðALBÞ þ KDBPðDBPÞÞ

25(OH)DBio was calculated as a sum of 25(OH)DFree and albumin-bound 25(OH)D.

pQCT measurements

Distal and shaft sites of the non-weight-bearing radius and weight-bearing tibia were mea-

sured with pQCT (XCT 2000, Stratec Medizintechnik GmbH, Pforzheim, Germany). Bone

density measurements were conducted at the Department of Food and Environmental Sci-

ences, University of Helsinki, in 2010.

The distal sites of the non-dominant radius and left tibia were scanned at 4% and 5% from

the distal endplate, respectively. The shaft sites of the radius and tibia were scanned at 30%

from the distal endplate. The measurement protocol is described in detail in Laaksonen et al.

[27]. Because weight and height are strong determinants of bone-size related traits, we chose

to include only the bone traits that are independent of body size [28]. For the distal and shaft

sites, volumetric trabecular density (TraD) and cortical density (CorD) values were deter-

mined. In addition, cortical strength index (CSI), indicating cortical stability, was calculated as

the ratio of cortical bone area to total bone area from both distal and shaft sites of the radius

and tibia. For the radius, CV% was 1.6% for TraD and 0.5% for CorD. For the tibia, the corre-

sponding CV%s were 0.5% and 0.6%.

Statistical analyses

Descriptive crude data are reported as means ± SD and adjusted data as means ±SE. Associa-

tion between variables of interest was tested with Pearson correlation. If outliers were detected,

Spearman correlation was used instead. Background characteristics were compared between

the three groups with analysis of variance (ANOVA). The difference between the normal-

weight, overweight and obese subjects in 25(OH)D, 25(OH)DFree, and 25(OH)DBio, PTH, and

DBP concentrations were tested with analysis of covariance (ANCOVA) using vitamin D

intake, holidays in sunny locations (yes/no) and age (25(OH)D, 25(OH)DFree and 25(OH)DBio

analyses), Ca intake and age (PTH analysis), or use of hormonal contraceptives (DBP analysis,

women) or age (CTX, PINP, osteocalcin analysis) as covariates. Post-hoc comparisons were

made with Bonferroni correction.

To determine the factors that affect the measured peripheral bone traits, a backward regres-

sion analysis was performed. Men and women were analyzed separately. In these regression

models, physical activity, age, pack-years, 25(OH)D, 25(OH)DFree, or 25(OH)DBio were

included as independent variables. The model with the largest adjusted coefficient of determi-

nation (R2) is presented. All analyses were performed using SPSS 24. A P-value of less than

0.05 was considered significant.

Free 25(OH)D, DBP, PTH and bone in obesity
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Results

Characteristics of participants

The mean±SD 25(OH)D concentration in all the subjects was 55.1±19.2 nmol/L and vitamin

D and Ca intakes 14.9±13.4 μg/day and 1252±530 mg/day, respectively. The background char-

acteristics of the subjects stratified by sex and BMI groups of normal-weight, overweight, and

obese are presented in Table 1. The values in the Table 1 were compared with ANOVA. Obese

women had 4.9 μg lower vitamin D intake than normal-weight women (P = 0.019), but Ca

intake did not differ between the groups (P = 0.603). They also had over an hour less physical

Table 1. Characteristics of the subjects stratified by sex and BMI.

Women Men

Normal-weight

N = 186

Over-weight

N = 130

Obese

N = 68

P Normal-weight

N = 56

Over-weight

N = 72

Obese

N = 36

P

Demographics

Age (years) 41.8±2.7 42.1±2.7 42.0±2.8 0.471 42.1±3.1 42.2±3.2 42.5±2.8 0.493

Height (cm) 166±6.5 165±5.5 163±7.1 0.001 180±7.2 180±6.5 178±4.8 0.092

Weight (kg) 62±6.4 73.7±6.5 89±10 <0.001 74.7±7.0 87.4±7.2 102.8±9.7 <0.001

BMI (kg/m2) 22±1.6 27±1.5 33±2.7 <0.001 23.0±1.40 27.0±1.36 32.6±2.30 <0.001

Background

Vitamin D intake (μg/day)� 16.2±14 15.1±13 11.1±7 0.019 11.3±6.10 16.4±16.9 18.4±19.2 0.061

Calcium intake (mg/day)� 1238±537 1281±515 1207±489 0.603 1121±461 1291±516 1445±661 0.003

Physical activity (min/week) 264±270 257±203 201±186 0.045 196±178 199±148 229±353 0.717

Holidays in sunny locations�� 31% 16% 4% 9% 14% 4%

Smoking (pack-years) 2.7±6.2 3.9±6.8 4.8±6.7 0.045 3.9±9.5 5.6±9.5 9.3±11.6 0.026

Blood concentrations

DBP (mg/L) 358±89 375±92 398±102 0.007 357±79.4 362±74.2 377±81.6 0.463

25(OH)D (nmol/L) 58.4±19.5 56.9±21.2 50.1±17.6 0.002 54.5±17.3 54.9±19.2 49.7±18.9 0.174

25(OH)DFree (pmol/L) 13.1±4.7 12.4±5.7 10.0±3.9 <0.001 12.1±4.5 11.9±4.8 10.6±4.7 0.271

25(OH)DBio (nmol/L) 5.2±1.9 4.90±2.3 3.8±1.5 <0.001 4.9±1.88 4.8±1.79 4.3±1.87 0.232

Albumin (g/L) 43.4±2.7 43.0±3.0 42.2±2.7 0.012 45.3±2.86 45.0±3.2 45.0±2.41 0.811

PTH (ng/L) 53.3±24.6 57.3±26.1 62.3±27.7 0.042 50.9±20.9 50.3±24.4 55.3±22.6 0.493

CTX (ng/mL) 0.37±0.16 0.33±0.15 0.29±0.13 0.001 0.54±0.18 0.49±0.19 0.39±0.12 <0.001

PINP (ng/mL) 36.7±14 35.2±13 32.6±12 0.1 43.9±13 40.7±14 37.1±11 0.036

Osteocalcin (ng/mL) 7.8±2.7 7.4±2.7 6.3±2.3 0.001 9.14±2.4 8.3±2.6 7.3±2.0 0.001

pQCT traits N = 168 N = 120 N = 62 N = 65 N = 90 N = 42

Distal radius TraD (mg/cm3) 192±29.0 198±26.5 206±28 0.004 219±28 232±26 228±26 0.012

Distal radius CSI 0.25±0.06 0.25±0.05 0.26±0.06 0.555 0.28±0.06 0.27±0.05 0.27±0.06 0.853

Radial shaft CorD (mg/cm3) 1148±33 1133±39 1128±41 <0.001 1124±49 1117±39 1109±34 0.187

Radial shaft CSI 0.86±0.07 0.87±0.04 0.87±0.55 0.464 0.85±0.05 0.85±0.05 0.86±0.04 0.704

Distal tibia TraD (mg/cm3) 209±30 219±24 223±25 <0.001 225±27 243±28 237±28 <0.001

Distal tibia CSI 0.21+0.06 0.22±0.04 0.24±0.05 0.022 0.24±0.05 0.27±0.07 0.27±0.06 0.029

Tibial shaft CorD (mg/cm)3 1110±29 1102±26 1100±28 0.008 1106±25 1088±26 1094±28 <0.001

Tibial shaft CSI 0.80±0.05 0.80±0.05 0.81±0.05 0.230 0.80±0.05 0.82±0.04 0.81±0.04 0.019

�Food and supplements.

��% of participants spent holidays in sunny locations. All values are means; ± SD, ANOVA. Abbreviations: 25(OH)DFree, Free 25(OH)D; 25(OH)DBio, Bioavailable 25

(OH)D; CTX, serum collagen type 1 cross-linked C-terminal telopeptide; PINP, serum intact pro-collagen type I aminoterminal propeptide; TraD, trabecular density;

CSI, Cortical strength index; CoD. cortical density.

https://doi.org/10.1371/journal.pone.0192596.t001
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activity (P = 0.045) and two years more pack-years than normal-weight women (P = 0.045). In

obese men, vitamin D and Ca intakes were 5.7 μg and 324 mg higher (P = 0.018, and 0.003,

respectively) and they had smoked in average five years more than their normal-weight peers

(P = 0.009). Mean vitamin D intake reached the recommendations of the Nordic European

countries (10 μg/day) in all groups [29]. 25(OH)D concentration was below 50 nmol/L in 57%

of obese women and 59.5% of men. In normal-weight women 35.5% and 44% men had 25

(OH)D concentrations below 50 nmol/L.

Differences in 25(OH)D, 25(OH)DFree, and 25(OH)DBio concentrations

between BMI groups

25(OH)D and 25(OH)DFree correlated negatively with PTH in both men (r = -0.179, r =

-0.159, P = 0.013, and 0.042, respectively) and women (r = -0.232; P<0.001, and r = -0.211;

P<0.001, respectively). 25(OH)DBio correlated negatively with PTH in women (r = -0.207;

P<0.001), but in men the correlation did not reach significance. Total, free, and bioavailable

25(OH)D correlated inversely with BMI in women and when both sexes were analyzed

together (r = -0,20; -0,21; -0,23, respectively, P<0.001) and (r = -0.15; -0.19; -0.19; respectively,

P<0.001), but not in men.

In women 25(OH)D concentrations did not differ among the BMI groups (Fig 1A). In

men, 25(OH)D was lower in obese men than in normal-weight (48.0 ±2.4 nmol/L vs. 56.4

±2.0 nmol/L, P = 0.003, ANCOVA) but there were no difference between normal weight and

overweight group or overweight and obese group Similarly, when both sexes were analyzed

together, obese subjects had lower 25(OH)D than normal-weight subjects (50.7±1.6 vs. 57.0

±1.0 nmol/L, respectively; P = 0.003, ANCOVA). There was also a significant difference

between overweight and obese group (P = 0.023, ANCOVA). 25(OH)DFree and 25(OH)DBio

concentrations were lower in the obese women (10.8±0.6 vs. 12.9±0.4 pmol/L and 4.1±0.3

nmol/L vs. 5.1 ±0.1 nmol/L, P<0.008 and <0.003, respectively, ANCOVA)(Fig 1B and 1C).

Also in men, 25(OH)DFree and 25(OH)DBio were lower in obese subjects (10.3±0.7 vs.

12.5±0.6 pmol/L and 4.2±0.3 vs. 5.1±0.2 pmol/L, P = 0.044 and 0.032, respectively,

ANCOVA). When both sexes were analyzed together, significant difference remained

(P<0.001, ANCOVA). There was also a significant difference between overweight and obese

in 25(OH)DFree and 25(OH)DBio (ANCOVA). There were no difference between normal

weight and overweight group or overweight and obese group in women and men analyzed

separately (ANCOVA).

Differences in PTH and DBP concentrations between BMI groups

DBP correlated positively with BMI when men and women were analyzed together (r = 0.363,

P = 0.025). In women, DBP and PTH correlated positively with BMI (r = 0.129, p = 0.016;

r = 0.181, p = 0.000, respectively). In women, PTH was higher in obese compared to normal-

weight subjects (62.2±3 ng/L vs. 53.3±1.9 ng/L, P = 0.045, ANCOVA) (Fig 1D). In men, the

difference was not significant. When both sexes were analyzed together, the difference was sig-

nificant (P = 0.047, ANCOVA). Obese women had higher DBP concentration than normal-

weight women (399±12mg/L vs. 356±7 mg/L, P = 0.008, ANCOVA) (Fig 1E). In males, DBP

concentration did not differ among BMI groups. When both sexes were analyzed together,

DBP was higher in obese subjects compared to normal-weight subjects (391±9 vs. 356±6 mg/

L, P = 0.004, ANCOVA). There was no difference in PTH or DBP concentrations between

normal-weight and overweight and overweight and obese subjects.
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Fig 1. Differences in total (A), free (B) and bioavailable 25(OH)D (C), PTH (D) and DBP (E) concentrations between

normal weight, overweight and obese women, men and both sexes combined. Results are shown for mean (±SE).

The values were adjusted for vitamin D intake, age, and holidays in sunny locations (A,B,C), calcium intake (D) or

hormonal contraceptives (E). ANCOVA, Bonferroni pairwise comparisons between normal-weight and obese:
�P<0.05,��P<0.01,���<0.001, respectively.

https://doi.org/10.1371/journal.pone.0192596.g001
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Differences in bone traits and bone turnover markers between BMI groups

Mean ±SD bone traits and comparison between normal-weight, overweight and obese subjects

are shown in Table 1. Trabecular density in obese women was 6.3% higher in distal radius

and 6.6% higher in distal tibia compared to normal-weight women (P = 0.004 and P<0.001,

respectively). In addition, CSI was 12.5% higher in obese women compared to normal weight

women (P = 0.022). Cortical density was 1.7% and 0.9% lower in obese women in the shaft

sites of radius and tibia (P<0.001; P = 0.008, respectively). (ANOVA, Table 1).

In obese men, trabecular density was 3.9% higher in distal radius and 12% higher in distal

tibia than in normal-weight men (P = 0.012 and P<0.001). (ANOVA, Table 1). Distal tibia

CSI was 11% higher and tibial shaft CSI was 1% higher (P = 0.029; P = 0.019, respectively).

Tibial shaft cortical density was 1% lower in obese men compared to normal weight men

(P<0.001).

The mean±SD crude values of bone turnover markers (CTX, PINP and osteocalcin) are

shown in Table 1. After adjusting with age, CTX and PINP were lower in obese women com-

pared to normal weight (mean±SE) (0.38±0.17 vs. 0.29 ±0.13, P< 0.001, ANCOVA). Also

PINP and osteocalcin were lower in the obese women (37.1±15 vs. 32.7±11; 7.9±2.8 vs.

6.2 ± 2.3, P = 0.034 and<0.001, respectively, ANCOVA. In men, CTX and osteocalcin were

lower in obese compared to normal weight men (0.54 ± 0.17 vs. 0.39±0.12, P<0.001; 9.1±0.24

vs. 7.4±2.0, P = 0.001, respectively, ANCOVA).

Associations of total, free and bioavailable 25(OH)D measures with bone

traits in BMI groups

To determine the factors associated with pQCT-measured bone traits in normal-weight and

obese women and men, multiple linear regression analyses were performed. Physical activity,

smoking and age were included as independent variables each analysis. Depending on the

model, 25(OH)D, 25(OH)Free or 25(OH)DBio were included as independent variables. The

results are shown in Table 2. In obese women, 25(OH)D was a negative determinant of distal

radius TraD (R2 = 0.089, β = -0.346, P = 0.009) and tibial shaft CSI (R2 = 0.146, β = 0.372,

P = 0.004). Furthermore, 25(OH)DFree was a negative determinant of distal radius CSI

Table 2. Standardized β-coefficients and R2 -values in backward linear regression model for determinants of pQCT-bone traits in obese women.

25(OH)D 25(OH)DFree 25(OH)DBio

Obese women N = 62 Adjusted R2 β P Adjusted R2 β P Adjusted R2 β P

Distal radius TraD (mg/cm3) 0.089a -0.346 0.009 0.027 -0.214 0.100 0.016 -0.189 0.147

Distal radius CSI 0.028 -0.152 0.243 0.070c -0.255 0.049 0.072f -0.260 0.045

Radial shaft CoD (mg/cm3) 0.016 -0.180 0.162 0.050d -0.255 0.045 0.059g -0.273 0.032

Tibial shaft CSI 0.146b -0.372 0.004 0.113e -0.317 0.012 0.107h -0.308 0.015

Other determinants in the models were age, physical activity, and smoking.

TraD trabecular density, CSI Cortical strength index, CoD cortical density, 25(OH)DFree = Free 25(OH)D, 25(OH)DBio = Bioavailable 25(OH)D.

Other remaining variables;
aphysical activity (P = 0.124),
bage (P = 0.058),
csmoking (P = 0.262) and age P = 0.141,
d -, e age (P = 0.074) and physical activity (P = 0.172),
fage (P = 0.146) and smoking (P = 0.281),
gP = 0.032,
hage (P = 0.079) physical activity (P = 0.169).

https://doi.org/10.1371/journal.pone.0192596.t002
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(R2 = 0.070, β = -0.255, P = 0.049), and tibial shaft CSI (R2 = 0.113, β = -0.317, P = 0.012). In

addition, 25(OH)D was a negative determinant of radial shaft CoD (R2 = 0.050, β = -0.255,

P = 0.045). 25(OH)DBio was a negative determinant of distal radius CSI (R2 = 0.072, β = -0.260,

P = 0.045), and tibial shaft CSI (R2 = 0.107, β = -0.308, P = 0.015). 25(OH)DBio was a negative

determinant of radial shaft cortical density (R2 = 0.059, β = -0.273, P = 0.032). In normal-

weight and overweight women, no associations were found between bone traits and 25(OH)D,

25(OH)DFree or 25(OH)DBio concentrations. Both in normal-weight and obese men, no

associations were found between the 25(OH)D concentrations and bone traits. In overweight

men, there was a positive association between total 25(OH)D and distal radius CSI (p = 0.046,

β = 0.208).

Discussion

In this cross-sectional study of 37- to 47-year-old men and women, we found that in the total

population and in men, 25(OH)D, 25(OH)DFree, and 25(OH)DBio were lower in obese than in

normal-weight persons. The difference in 25(OH)D did not reach statistical significance in

women. In addition, DBP and PTH were higher in obese than normal-weight women and in

the total population. In men, no difference in DBP and PTH was found between the BMI

groups. We also found that in obese women, there was a weak negative association between 25

(OH)D, 25(OH)Free and 25(OH)Bio and some bone traits. Bone turnover markers were lower

in obese subjects.

It is well established that serum 25(OH)D is lower in obese people and inversely correlated

with BMI [6, 8, 30]. Evidence suggest that as lipophilic substance, vitamin D is trapped or

sequestered in adipocytes and can only be released when there is net mobilization of fatty acids

in the triacyl glycerol droplet. Therefore it has been speculated that in obese individuals with

larger volume of fat tissue less vitamin D could be available for liver synthesis into 25(OH)D

[5, 6, 31]. Also the volume of other tissues, i.e. blood and muscles, where 25(OH)D is also dis-

tributed, is larger in obese persons. In addition, some studies have shown that obesity attenu-

ates the rise of 25(OH)D in the circulation after UV exposure and that the 25(OH)D response

to oral vitamin D dosing is BMI-dependent [32, 33]. In our study, we were able to find signifi-

cant differences in 25(OH)D between BMI groups only in men and in total population,

although a similar trend was seen also in women. Despite adequate vitamin D intake in all of

the BMI groups, over 50% of obese women and men had 25(OH)D lower than 50 nmol/L.

According to the free hormone hypothesis, the unbound form of 25(OH)D would correlate

better with the biological actions of vitamin D than the bound form [13]. Should this hypothe-

sis be true, circulating unbound 25(OH)D would enter the extrarenal tissues passively, and

local 1α-hydroxylase would convert it to the active form of 1,25OH2D3. Studies on 25(OH)

DFree in obese individuals are few and the results have been controversial. The method for

determining the concentrations of 25(OH)DFree and 25(OH)DBio in these studies has varied

from estimated values [34] to direct measurement [17, 35]. The calculation of 25(OH)DFree

concentrations is based on mathematical formula which takes into account total 25(OH)D,

DBP and albumin concentrations as well as the corresponding affinity constants. 25(OH)DFree

can also be measured directly by equilibrium dialysis, ultrafitration or immunoassays. A novel

direct twostep immunoassay (liquid chromatography-tandem mass spectrometry, LC-MS/

MS) for measuring 25(OH)DFree has shown good correlations with calculated or directly mea-

sured values, at least in normal weight subjects [14]. According to Malmström et al. when the

25(OH)Free concentration is estimated by calculation, the assays to measure DBP and total 25

(OH)D must be the best methods available, such as LC-MS/MS (for total 25(OH)D levels) and

polyclonal antibody–based immunoassays (for measuring DBP) [36]. The limitation in our
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study is that we were not able to directly measure 25(OH)DFree. However, the total 25(OH)D

concentration, used in the calculation of 25(OH)DFree and 25(OH)DBio, was measured with

enzyme immunoassay in a laboratory that was in the process of achieving DEQAS-certificate

and DBP was measured with polyclonal antibody-based assay and therefore the calculation of

25(OH)DFree and 25(OH)DBio can be considered reliable. According to Bikle et al. experience

with direct measurements of the free levels is limited and conclusions cannot be made on the

influence of racial differences and the impact of inflammatory or other disease states that may

alter the relationship between total and free metabolite levels [37].

A study of 22- to 45-year-old obese and normal-weight women in Sweden discovered that

obese women had lower calculated 25(OH)DFree than normal-weight women [34]. The authors

also reported lower 25(OH)D concentrations among obese women. Similarly, in a study con-

ducted in the United Kingdom, measured 25(OH)DFree and 25(OH)DBio were lower in obese

men and women than in normal-weight or overweight subjects aged 25–75 years [17]. Also 25

(OH)D3 was lower in obese and overweight people than in normal-weight people in the fall

and spring, but not in the winter, and correlated negatively with whole-body fat mass in all sea-

sons. The reason for not seeing differences in the winter may be due to the fact that obese peo-

ple have similar cutaneous synthesis of vitamin D, but the rise of 25(OH)D in serum is blunted

[38, 39]. Our results on 25(OH)Free are consistent with previous studies. Obese subjects appear

to have lower 25(OH)Free concentrations regardless of the method used for the measurement.

25(OH)D was lower among obese subjects only in men and when men and women were ana-

lyzed together. One reason for not having such a clear differences in 25(OH)D could be the

same as in the study made in United Kingdom since our study was conducted in winter/early

spring, when UVB-induced endogenous vitamin D synthesis in the skin is marginal in Fin-

land. The lack of vitamin D levels collected during summer months may have narrowed the

range of 25(OH)D data and reduced the strength of observed associations.

PTH has been suggested to be a health outcome reference for optimal vitamin D status. If

vitamin D intake is low, and gut calcium absorption is therefore reduced and 25(OH)D con-

centration is low enough, PTH is expected to rise [40]. As expected, we found an inverse asso-

ciation between 25(OH)D and PTH. Furthermore, in our study, PTH differed between the

BMI groups, but only in women and when the sexes were combined. Contrary to our results,

Walsh et al. [17] reported that PTH did not differ by BMI group and did not correlate with

BMI in either sex. They speculated that the relation between 25(OH)D and PTH may be

altered in obesity. In some studies, body weight was a strong predictor of PTH, but 25(OH)D

had little or no relation with PTH. Obese young Finnish adults exhibited lower total and mea-

sured 25(OH)DFree and slightly higher PTH than their normal-weight peers, and 25(OH)DFree

was associated with obesity-related parameters [35].

Earlier studies have had conflicting results on the relationship between BMI and DBP.

Some studies have shown no association between DBP and BMI [17, 35, 41]. Taes et al. [42]

found a positive correlation between DBP concentrations and BMI and leptin concentrations

and speculated that the relation DBP-fat mass could also have influenced glucose handling. In

Karlsson et al. study, DBP was higher in obese subjects [34]. Since estrogens are known to

increase DBP concentrations, they speculated that although estrogen levels are not normally

elevated in obesity, higher levels of free estrogen in obesity could possibly have an effect on

hepatic DBP production. They also suggested inteleukin-6 could be behind the higher DBP

concentration in the obese subjects, since in vitro IL-6 has been shown to increase hepatic

DBP production [43] and IL-6 is raised in obesity [44].

Also the DBP genotype can influence the measured DBP concentrations as well as on

DBP’s ability to bind 25(OH)D. In our previous study of the same study population, we

found genetic differences in DBP, 25(OH)DFree, and 25(OH)DBio concentrations [45]. In
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addition, Almesri et al. [46] found an association between DBP gene polymorphism and obe-

sity. In the present study, some of the diplotype groups were too small to make statistical

comparisons and therefore we were not able to take into account DBP polymorphism. Also

the use of different methods (monoclonal vs. polyclonal) for measuring DBP can affect the

results. The optimal method for measuring DBP concentrations has also been under debate.

The two different methods are one that use monoclonal antibodies and the other that is

using polyclonal antibodies. Method using monoclonal antibodies may not be reliable to

measure polymorphic DBP in groups of different races and genotypes because monoclonal

assay may quantify DBP concentration differentially by DBP isoform. The polyclonal

method is not subject to bias and in contrast to monoclonal method, the polyclonal does not

differ by race [47, 48].

Because weight and height are strong determinants of bone-size related traits [28], we eval-

uated only the bone traits that are independent of body size. We found that 25(OH)D was a

significant but weak negative determinant of trabecular density of the distal radius, and 25

(OH)D, 25(OH)Dfree and 25(OH)DBio were negative determinants of tibial shaft CSI. 25(OH)

DFree and 25(OH)Bio were also negatively associated with cortical density of the radial shaft. In

normal-weight women, no significant association was found between 25(OH)D, 25(OH)DFree,

or 25(OH)DBio and bone traits. Also in men, no associations were found between 25(OH)D

concentrations and bone traits. Earlier studies using DXA have shown that calculated 25(OH)

DFree and 25(OH)DBio but not 25(OH)D, correlated with whole-body and hip areal BMD,

where the adjustment for 25(OH)DFree and 25(OH)DBio values with DBP genotype-specific

coefficients improved the association [15]. In our study, obese men and women had higher tra-

becular density and CSI but slightly lower cortical density. Furthermore obesity was associated

with lower concentrations of bone turnover markers in both men and women. Walsh et al. dis-

covered higher whole-body, lumbar spine, and hip areal BMD with DXA, and distal radius

and tibia trabecular density measured with HR-pQCT in obese and overweight groups than in

the normal-weight group. Also bone turnover was higher in the obese group, contrary to our

results. However, Walsh did not look at the direct association of total, free and bioavailable 25

(OH)D with bone parameters [17]. They suggested that in their study, the lower serum 25

(OH)D in obesity reflected true vitamin D deficiency, but that possibly the adverse skeletal

effects are countered by positive skeletal effects of obesity such as increased estrogen synthesis

from adipocyte aromatase or adipocyte hormones such as leptin. However, in our study

women were premenopausal and therefore the estrogen production by the ovaries exceeds that

from adipose tissue. A potential explanation for the negative associations of free and bioavail-

able 25(OH)D concentrations with some bone traits in obese women of our study, could be

the altered vitamin D metabolism due to higher DBP and lower 25(OH)DFree and 25(OH)DBio

in obese women. Obese women also had more smoking years and they exercised less than the

normal weight women.

Strengths of our study are the large population-based sample of both women and men,

assessment of several bone traits with pQCT in two functionally different bones (non-weight

bearing radius and weight bearing tibia) and sites (mostly trabecular distal site and cortical

diaphysis), analysis of several established biomarkers, and extensive background data. More-

over, in contrast to commonly used dual-energy x-ray absorptiometry, providing aBMD

values that are difficult to interpret unambiguously [49]. pQCT provides relevant data for

trabecular and cortical BMD as well as bone geometry, size, and mass [50]. However, mea-

surement of fat percentage, waist circumference or body composition would have been a bet-

ter proxy for obesity than BMI. We neither did not specifically evaluate the confounding

influence of bone-loading activity on bone traits or take the history of physical activity into

account.
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Conclusion

The observed associations between BMI and 25(OH)D, 25(OH)DFree, and 25(OH)DBio, DBP,

and PTH suggest that obese subjects may differ from normal-weight subjects in their vitamin

D metabolism. BMI associated positively with trabecular bone traits and CSI in our study, and

slightly negatively with cortical bone traits. Surprisingly, there was a negative association of

free and bioavailable 25(OH)D and some of the bone traits in obese women.
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