22 research outputs found

    Strong Domination Index in Fuzzy Graphs

    Full text link
    Topological indices play a vital role in the area of graph theory and fuzzy graph (FG) theory. It has wide applications in the areas such as chemical graph theory, mathematical chemistry, etc. Topological indices produce a numerical parameter associated with a graph. Numerous topological indices are studied due to its applications in various fields. In this article a novel idea of domination index in a FG is defined using weight of strong edges. The strong domination degree (SDD) of a vertex u is defined using the weight of minimal strong dominating set (MSDS) containing u. Idea of upper strong domination number, strong irredundance number, strong upper irredundance number, strong independent domination number, and strong independence number are explained and illustrated subsequently. Strong domination index (SDI) of a FG is defined using the SDD of each vertex. The concept is applied on various FGs like complete FG, complete bipartite and r-partite FG, fuzzy tree, fuzzy cycle and fuzzy stars. Inequalities involving the SDD and SDI are obtained. The union and join of FG is also considered in the study. Applications for SDD of a vertex is provided in later sections. An algorithm to obtain a MSDS containing a particular vertex is also discussed in the article

    Domination Index in Graphs

    Full text link
    The concepts of domination and topological index hold great significance within the realm of graph theory. Therefore, it is pertinent to merge these concepts to derive the domination index of a graph. A novel concept of the domination index is introduced, which utilizes the domination degree of a vertex. The domination degree of a vertex a is defined as the minimum cardinality of a minimal dominating set that includes a. The idea of domination degree and domination index is conducted of graphs like complete graphs, complete bipartite, r partite graphs, cycles, wheels, paths, book graphs, windmill graphs, Kragujevac trees. The study is extended to operation in graphs. Inequalities involving domination degree and already established graph parameters are discussed. An application of domination degree is discussed in facility allocation in a city. Algorithm to find a MDS containing a particular vertex is also discussed in the study

    Post-Starburst Properties of Post-Merger Galaxies

    Full text link
    Post-starburst galaxies (PSBs) are transition galaxies showing evidence of recent rapid star formation quenching. To understand the role of galaxy mergers in triggering quenching, we investigate the incidence of PSBs and resolved PSB properties in post-merger galaxies using both SDSS single-fiber spectra and MaNGA resolved IFU spectra. We find post-mergers have a PSB excess of 10 - 20 times that relative to their control galaxies using single-fiber PSB diagnostics. A similar excess of ~ 19 times is also found in the fraction of central (C)PSBs and ring-like (R)PSBs in post-mergers using the resolved PSB diagnostic. However, 60% of the CPSBs + RPSBs in both post-mergers and control galaxies are missed by the single-fiber data. By visually inspecting the resolved PSB distribution, we find that the fraction of outside-in quenching is 7 times higher than inside-out quenching in PSBs in post-mergers while PSBs in control galaxies do not show large differences in these quenching directions. In addition, we find a marginal deficit of HI gas in PSBs relative to non-PSBs in post-mergers using the MaNGA-HI data. The excesses of PSBs in post-mergers suggest that mergers play an important role in triggering quenching. Resolved IFU spectra are important to recover the PSBs missed by single-fiber spectra. The excess of outside-in quenching relative to inside-out quenching in post-mergers suggests that AGN are not the dominant quenching mechanism in these galaxies, but that processes from the disk (gas inflows/consumption and stellar feedback) play a more important role.Comment: Accepted in MNRAS on May 12 2023, 19 pages, 15 figures, 4 table

    Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis

    Get PDF
    Diabetic patients suffer from a host of physiological abnormalities beyond just those of glucose metabolism. These abnormalities often lead to systemic inflammation via modulation of several inflammation-related genes, their respective gene products, homocysteine metabolism, and pyroptosis. The very nature of this homeostatic disruption re-sets the overall physiology of diabetics via upregulation of immune responses, enhanced retinal neovascularization, upregulation of epigenetic events, and disturbances in cells’ redox regulatory system. This altered pathophysiological milieu can lead to the development of diabetic retinopathy (DR), a debilitating vision-threatening eye condition with microvascular complications. DR is the most prevalent cause of irreversible blindness in the working-age adults throughout the world as it can lead to severe structural and functional remodeling of the retina, decreasing vision and thus diminishing the quality of life. In this manuscript, we attempt to summarize recent developments and new insights to explore the very nature of this intertwined crosstalk between components of the immune system and their metabolic orchestrations to elucidate the pathophysiology of DR. Understanding the multifaceted nature of the cellular and molecular factors that are involved in DR could reveal new targets for effective diagnostics, therapeutics, prognostics, preventive tools, and finally strategies to combat the development and progression of DR in susceptible subjects

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    The Binding Energies and Interactions of a Gastric Carcinoma Segment with the Polymer Segment (2E,4R,5S)-2,3,4,5-tetrahydroxy-6-(palmitoyloxy)hex-2-enoic acid Using Molecular Modeling

    No full text
    We modeled the binding of a segment of gastric carcinoma to the polymer segment (2E,4R,5S)-2,3,4,5-tetrahydroxy-6-(palmitoyloxy)hex-2-enoic acid using SPARTAN Student v9. Our aim is to provide more data to the drug industry on how gastric carcinoma binds to molecular strands and, by analogy, real proteins. When producing drugs for different diseases, scientists can save time and resources using modeling software because computational results help prioritize leads to follow-up in the laboratory. To begin our calculations, we found a specific model of the substrate polymer and cancer we wished to study. Once we built these molecular models, we applied the SPARTAN Molecular Mechanics Force Field (MMFF) to predict binding energy between the two models. To model the binding interaction between the cancer and polymer strands, we divided the strand of cancer protein into five binding sites. Then we placed the polymer in 20 different positions along the cancer strand and measured the binding energy of the interaction between the molecules. Once we had those energy values, we used two formulas to help us compare the energies and to make predictions of how the cancer strand binds to the polymer segment

    Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release

    No full text
    Generation of hydrogen sulfide (H2S) is challenging and few methods are capable of localized delivery of this gas. Here, a boron dipyrromethene-based carbamothioate (BDP-H2S) that is uncaged by visible light of 470 nm to generate carbonyl sulfide (COS), which is rapidly hydrolyzed to H2S in the presence of carbonic anhydrase, a widely prevalent enzyme, is reported
    corecore