320 research outputs found
Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields
Thrips exhibit different reproductive modes including thelytoky (females produced from unfertilized eggs), arrhenotoky (males produced from unfertilized eggs and females produced from fertilized eggs) and deuterotoky (females and males produced from unfertilized eggs). We investigated patterns of reproductive modes in onion thrips, Thrips tabaci Lindeman, populations and potential effects of the bacterium Wolbachia and temperature on these modes. We also examined the possibility that male-producing T. tabaci populations were resistant to the frequently used insecticides, lambda-cyhalothrin and methomyl. In New York during 2002-2004, T. tabaci populations were sampled from 20 onion fields and reproductive mode was determined by identifying sex of progeny from virgins. Half of the populations were thelytokous and half were a mix of thelytokous, arrhenotokous and deuterotokous individuals, which we refer to as a male-producing population. In two of four cases, the reproductive mode of a population from the same onion field changed across years, suggesting that populations either mix or an external factor caused the change. To address the latter, we speculated that Wolbachia or high temperature mediated reproductive modes. Samples of T. tabaci representing each reproductive mode were examined for Wolbachia using diagnostic polymerase chain reaction (PCR), but it was not detected. Cytological examination of ovaries from two additional thelytokous lines also showed no evidence of Wolbachia. Similarly, high temperature did not affect sex allocation ratios in either thelytokous or male-producing populations. Male-producing T. tabaci populations were not positively correlated with resistance to lambda-cyhalothrin, or tolerance to methomyl. The role of the different reproductive modes in T. tabaci populations in onion fields remains unclea
#Nationalism: the ethno-nationalist populism of Donald Trump’s Twitter communication
In this article, we explore the ethno-nationalist populism of Donald Trump’s Twitter communication during the 2016 presidential campaign. We draw on insights from ethno-symbolism – a perspective within nationalism studies – to analyse all 5,515 tweets sent by Trump during the campaign. We find that ethno-nationalist and populist themes were by far the most important component of Trump’s tweets, and that these themes built upon long-standing myths and symbols of an ethnic conception of American identity. In sum, Trump’s tweets depicted a virtuous white majority being threatened by several groups of immoral outsiders, who were identified by their foreignness, their religion, and their self-interestedness. The struggle against these groups was framed as a mission to restore America to a mythical golden age – to “Make America Great Again.
In search of the authentic nation: landscape and national identity in Canada and Switzerland
While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration
The dominant ethnic moment: towards the abolition of 'whiteness'?
International audienc
Lambda and Antilambda polarization from deep inelastic muon scattering
We report results of the first measurements of Lambda and Antilambda
polarization produced in deep inelastic polarized muon scattering on the
nucleon. The results are consistent with an expected trend towards positive
polarization with increasing x_F. The polarizations of Lambda and Antilambda
appear to have opposite signs. A large negative polarization for Lambda at low
positive x_F is observed and is not explained by existing models.A possible
interpretation is presented.Comment: 9 pages, 2 figure
Open-label add-on treatment trial of minocycline in fragile X syndrome
<p>Abstract</p> <p>Background</p> <p>Fragile X syndrome (FXS) is a disorder characterized by a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socio-emotional problems. It is hypothesized that the absence of the fragile X mental retardation protein (FMRP) leads to higher levels of matrix metallo-proteinase-9 activity (MMP-9) in the brain. Minocycline inhibits MMP-9 activity, and alleviates behavioural and synapse abnormalities in <it>fmr1 </it>knockout mice, an established model for FXS. This open-label add-on pilot trial was conducted to evaluate safety and efficacy of minocycline in treating behavioural abnormalities that occur in humans with FXS.</p> <p>Methods</p> <p>Twenty individuals with FXS, ages 13-32, were randomly assigned to receive 100 mg or 200 mg of minocycline daily. Behavioural evaluations were made prior to treatment (baseline) and again 8 weeks after daily minocycline treatment. The primary outcome measure was the Aberrant Behaviour Checklist-Community Edition (ABC-C) Irritability Subscale, and the secondary outcome measures were the other ABC-C subscales, clinical global improvement scale (CGI), and the visual analog scale for behaviour (VAS). Side effects were assessed using an adverse events checklist, a complete blood count (CBC), hepatic and renal function tests, and antinuclear antibody screen (ANA), done at baseline and at 8 weeks.</p> <p>Results</p> <p>The ABC-C Irritability Subscale scores showed significant improvement (p < 0.001), as did the VAS (p = 0.003) and the CGI (p < 0.001). The only significant treatment-related side effects were minor diarrhea (n = 3) and seroconversion to a positive ANA (n = 2).</p> <p>Conclusions</p> <p>Results from this study demonstrate that minocycline provides significant functional benefits to FXS patients and that it is well-tolerated. These findings are consistent with the <it>fmr1 </it>knockout mouse model results, suggesting that minocycline modifies underlying neural defects that account for behavioural abnormalities. A placebo-controlled trial of minocycline in FXS is warranted.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Open-Label Trial NCT00858689.</p
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
The SysteMHC Atlas project.
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts
Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection
- …