61 research outputs found

    Liberating labour: The New Zealand employment contracts act

    Get PDF
    Between 1984 and 1991, New Zealand converted its economic system from the most heavily regulated to the least regulated in OECD. The public sector was restructured to separate core administrative functions from government-owned production activities. The latter were corporatised, and many privatised. Product markets were deregulated and opened to international competition. Virtually all producer subsidies were abolished. Foreign trade was liberalised. Financial and capital markets were liberalised and foreign investment and immigration were made welcome. Labour markets were freed up, and workers were given the right to associate freely. In the process, a formerly inwardlooking, slow-moving economy with rising unemployment was turned into a flexible, globally competitive, high-growth economy with price stability, above-average job creation and small, effective government. New Zealand had long been known internationally for its system of centralised wage fixing and arbitration. Since 1991, however, it has become equally known for the new Employment Contracts Act (ECA), which was the capstone of the comprehensive economic and social reform programme. The ECA converted a centralist, corporatist industrial relations system into a decentralised 'market order. Freely negotiated labour contracts are now the basis for responsive, diverse labour markets. The effects of the Act can only be understood as an integral part of all-round liberalisation and New Zealand's reinvention of government. Previously antagonistic industrial relations have given way to cooperation between employers and workers, flexible adjustment to competitive conditions and an enhanced competitiveness of New Zealand workplaces and firms in a rapidly changing, internationally open economy. The new workplace relationship has led to profound attitude changes which have been inspired by the discipline of open, competitive product markets and the withdrawal of several labour-supply disincentives in the form of public-welfare supports. The main effect of the labour reforms has been to assist in making the supply-side of the New Zealand economy fairly price elastic. This has been underpinned by a price-level target for independent monetary policy and by fiscal downsizing, privatisation and public debt reduction. Employers and most employees have welcomed the freedoms under the new contracts system. In many sectors, productivity has risen steeply, reflecting more rational work practices. Managers are now able to effectively manage the human resources that firms hire. Real wages have risen, but slowly, reflecting productivity gains. Union membership and the number of union officials have fallen, as many workers now use bargaining agents to negotiate employment contracts. The frequency of strikes and lockouts has fallen considerably. The ECA and the other reforms have created a Kiwi job-creation machine, which has increased aggregate employment by over 10 percent during the long upswing of 1991- 95. It has nearly halved the overall unemployment rate within less than two years - in contrast to earlier upturns in the New Zealand cycle and the pattern in Australia. As labour shortages are emerging in the present cyclical upswing, many long-term unemployed, the young and Maori are being drawn back into gainful employment. Labour market deregulation has also increased the market premia for skills and reduced transaction costs in operating about markets. Most observers predict a period of sustained, inflation-free growth and further drops in unemployment (March 1995: 6.6%) as New Zealand - despite a strengthening currency - is now seen as an internationally highly competitive exporter and an attractive location to internationally mobile capital and enterprise.

    Liberating labour: The New Zealand employment contracts act

    Full text link
    Between 1984 and 1991, New Zealand converted its economic system from the most heavily regulated to the least regulated in OECD. The public sector was restructured to separate core administrative functions from government-owned production activities. The latter were corporatised, and many privatised. Product markets were deregulated and opened to international competition. Virtually all producer subsidies were abolished. Foreign trade was liberalised. Financial and capital markets were liberalised and foreign investment and immigration were made welcome. Labour markets were freed up, and workers were given the right to associate freely. In the process, a formerly inwardlooking, slow-moving economy with rising unemployment was turned into a flexible, globally competitive, high-growth economy with price stability, above-average job creation and small, effective government. New Zealand had long been known internationally for its system of centralised wage fixing and arbitration. Since 1991, however, it has become equally known for the new Employment Contracts Act (ECA), which was the capstone of the comprehensive economic and social reform programme. The ECA converted a centralist, corporatist industrial relations system into a decentralised 'market order. Freely negotiated labour contracts are now the basis for responsive, diverse labour markets. The effects of the Act can only be understood as an integral part of all-round liberalisation and New Zealand's reinvention of government. Previously antagonistic industrial relations have given way to cooperation between employers and workers, flexible adjustment to competitive conditions and an enhanced competitiveness of New Zealand workplaces and firms in a rapidly changing, internationally open economy. The new workplace relationship has led to profound attitude changes which have been inspired by the discipline of open, competitive product markets and the withdrawal of several labour-supply disincentives in the form of public-welfare supports. The main effect of the labour reforms has been to assist in making the supply-side of the New Zealand economy fairly price elastic. This has been underpinned by a price-level target for independent monetary policy and by fiscal downsizing, privatisation and public debt reduction. Employers and most employees have welcomed the freedoms under the new contracts system. In many sectors, productivity has risen steeply, reflecting more rational work practices. Managers are now able to effectively manage the human resources that firms hire. Real wages have risen, but slowly, reflecting productivity gains. Union membership and the number of union officials have fallen, as many workers now use bargaining agents to negotiate employment contracts. The frequency of strikes and lockouts has fallen considerably. The ECA and the other reforms have created a Kiwi job-creation machine, which has increased aggregate employment by over 10 percent during the long upswing of 1991- 95. It has nearly halved the overall unemployment rate within less than two years - in contrast to earlier upturns in the New Zealand cycle and the pattern in Australia. As labour shortages are emerging in the present cyclical upswing, many long-term unemployed, the young and Maori are being drawn back into gainful employment. Labour market deregulation has also increased the market premia for skills and reduced transaction costs in operating about markets. Most observers predict a period of sustained, inflation-free growth and further drops in unemployment (March 1995: 6.6%) as New Zealand - despite a strengthening currency - is now seen as an internationally highly competitive exporter and an attractive location to internationally mobile capital and enterprise

    Die Befreiung des Arbeitsmarktes: Neuseelands Wirtschaft im Aufschwung

    Full text link
    Von 1984 bis 1991 hat Neuseeland sein Wirtschaftssystem von dem am stärksten zu dem am schwächsten reglementierten innerhalb der OECD umgeformt. Durch eine Umstrukturierung des öffentlichen Sektors wurden die Kernfunktionen der Administration von den staatseigenen Produktionsbetrieben getrennt. Letztere wurden in eigenständige Kapitalgesellschaften umgewandelt, viele wurden privatisiert. Produktmärkte wurden dereguliert und für den internationalen Wettbewerb geöffnet. Praktisch alle Subventionen an Produzenten wurden gestrichen. Der Außenhandel wurde liberalisiert, ebenso die Geld- und Kapitalmärkte. Ausländische Investitionen und Einwanderung wurden erleichtert. Arbeitsmarktkontrollen wurden weitgehend abgeschafft, und die Arbeitnehmer bekamen das Recht, sich ungehindert zusammenzuschließen. Durch diese Maßnahmen wurde eine zuvor binnenmarktorientierte, skierotische Volkswirtschaft mit steigender Arbeitslosigkeit in eine flexible, international wettbewerbsfähige, schnell wachsende Volkswirtschaft mit Preisstabilität, überdurchschnittlichem Zuwachs an neuen Arbeitsplätzen und einem kleinen, effizienten Regierungsapparat verwandelt. - Lange Zeit war Neuseeland für sein System der zentralen Lohnfestlegung und sein Schiedsgerichtsverfahren für Arbeitskonflikte international bekannt. Seit 1991 ist es jedoch gleichermaßen durch das neue Arbeitsvertragsgesetz (Employment Contracts Act - ECA) bekannt geworden, welches den Schlußstein des umfassenden wirtschaftlichen und sozialen Reformprogramms darstellt. Das Arbeitsvertragsgesetz hat ein zentralisiertes, korporatistisches Tariflohnsystem durch dezentrale, marktwirtschaftliche Lohnfindung abgelöst. Heute sind frei ausgehandelte Arbeitsverträge die Grundlage für flexible Arbeitsmärkte. Das Gesetz vervollständigte einen achtjährigen Prozeß der Liberalisierung und der gründlichen Neukonzeptionierung des gesamten Staatsapparates in Neuseeland. - Bis dahin antagonistische Arbeitgeber-Arbeitnehmer-Beziehungen wurden ersetzt durch Kooperation zwischen Arbeitgebern und Arbeitnehmern, flexible Anpassung an die Bedingungen des Wettbewerbs sowie eine verbesserte internationale Wettbewerbsfähigkeit neuseeländischer Arbeitsplätze und Unternehmen in einer sich schnell verändernden, weltoffenen Volkswirtschaft. Die Neuregelung der Arbeitsverhältnisse hat zu grundlegenden Verhaltensänderungen geführt, einerseits hervorgerufen durch die disziplinierende Wirkung der Konkurrenz auf den Produktmärkten, andererseits durch den Wegfall einiger Anreize zur Nicht-Arbeit in Form staatlicher Sozialleistungen wurde. Die Arbeitsmarktreformen haben einen wesentlichen Beitrag dazu geleistet, die Angebotsseite der neuseeländischen Wirtschaft weitgehend preiselastisch zu machen. Dies wurde auch durch die Ausrichtung einer unabhängigen Geldpolitik am Ziel der Preisstabilität, durch Verkleinerung des staatlichen Sektors, Privatisierungen und die Reduzierung der öffentlichen Verschuldung unterstützt. - Die Arbeitgeber wie auch die meisten Arbeitnehmer haben die Freiheiten des neuen Vertragssystems begrüßt. In vielen Sektoren ist die Produktivität deutlich angestiegen, was auf rationalere Arbeitstechnik und -Organisation zurückzuführen ist. Die Manager sind jetzt in der Lage, die in den Firmen beschäftigten Arbeitskräfte effektiv einzusetzen. Die Reallöhne sind aufgrund der Produktivitätssteigerungen gestiegen, wenn auch langsam. Die Zahl der Gewerkschaftsmitglieder und -funktionäre ist gesunken, da viele Arbeitnehmer jetzt über Agenten ihre Arbeitsverträge aushandeln lassen. Die Häufigkeit von Streiks und Aussperrungen ist dramatisch gesunken. Das Arbeitsvertragsgesetz und die übrigen Reformen haben eine »Kiwi-Arbeitsplatzschaffungsmaschine « entstehen lassen, die während des langen Aufschwungs von 1991 bis 1995 die Beschäftigung insgesamt um über 10 Prozent gesteigert hat. Sie hat - im Gegensatz zu früheren konjunkturellen Aufschwungphasen in Neuseeland und zu der Entwicklung in Australien - die Arbeitslosenquote innerhalb von zwei Jahren annähernd halbiert. Da im Rahmen des gegenwärtigen Konjunkturaufschwunges örtlich sogar Arbeitskräftemangel besteht, werden viele Langzeitarbeitslose, Jugendliche und Maoris wieder in den Arbeitsmarkt integriert. Die Deregulierung des Arbeitsmarktes hat auch Lohnzuschläge für berufliche Qualifikationen verbessert und die Transaktionskosten verringert. Die meisten Beobachter sagen eine Periode nachhaltigen, inflationsfreien Wachstums sowie ein weiteres Absinken der Arbeitslosigkeit voraus (Arbeitslosenquote im Juni 1995: 6,1 Prozent), weil Neuseeland trotz seiner stärker werdenden Währung jetzt als ein international überaus wettbewerbsfähiges Exportland und als ein attraktiver Standort für international mobiles Kapital und Unternehmertum gilt

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Pluralism of Competition Policy Paradigms and the Call for Regulatory Diversity

    Full text link

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L
    corecore