103 research outputs found

    Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects

    Get PDF
    Adaptations and, counteradaptations are common in coevolving predatorprey systems, but little is known of the role of maternal transfer of adaptive traits in mediating species interactions. Here, we focused on tolerance against cyanobacterial toxins and asked whether this tolerance was an induced defense developed during Daphnia's lifetime, whether it was a trait that is constantly expressed, and whether such tolerance to the toxin can be transferred to the next generation through maternal effects. These questions were addressed by feeding a single clone of Daphnia magna a diet with and without algal toxin and recording changes in fitness (as intrinsic rate of population increase). Analysis of F1, F2, and F3 generations revealed that the increased tolerance to toxic Microcystis was an inducible defense developed during an individual's lifetime, and that this trait could be transferred from mother to offspring. This maternal effect was expressed in several fitness parameters, including shorter time to maturity and first reproduction, and higher numbers of offspring compared to inexperienced individuals. In some circumstances, such maternal effects may increase population production by up to 40% and may help to stabilize material and energy transfer to higher trophic levels

    Priority effects in a planktonic bloom-forming marine diatom

    Get PDF
    Priority effects occur when a species or genotype with earlier arrival has an advantage such that its relative abundance in the community or population is increased compared with later-arriving species. Few studies have dealt with this concept in the context of within-species competition. Skeletonema marinoi is a marine diatom that shows a high degree of genetic differentiation between populations over small geographical distances. To test whether historical events such as priority effects may have been important in inducing these patterns of population differentiation, we performed microcosm experiments with successive inoculation of different S. marinoi strains. Our results show that even in the absence of a numerical advantage, significant priority effects were evident. We propose that priority effects may be an important mechanism in initiating population genetic differentiation

    On the control of HAB species using low biosurfactant concentrations

    Get PDF
    Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 ÎŒg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 ÎŒg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.Postprin

    Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen

    Get PDF
    The nuisance alga Gonyostomum semen (Raphidophyceae) has expanded in the Nordic countries during the last decades and can dominate lake phytoplankton communities almost completely. A possible explanation to its dominance could be limited grazing by zooplankton. We investigated the potential grazing pressure on G. semen using an experimental approach supported by field data. We determined the grazing rate by cladocerans, calanoid copepods, and Chaoborus larvae to determine which were able to feed on G. semen. Only the large cladoceran Daphnia magna was able to feed successfully on G. semen. The large cell size of G. semen was likely a limiting factor for the filtering apparatus of smaller cladocerans. The copepod Eudiaptomus gracilis did not graze on G. semen, although the mechanism behind this selective feeding is still unknown. In addition to the experimental study, we quantified the zooplankton and phytoplankton communities in 40 lakes to determine the composition and abundance of the zooplankton communities co-occurring with G. semen, suggesting that large cladoceran species were not present in lakes where G. semen occurred. Hence, the growth of G. semen is not significantly controlled by grazing in natural systems, which likely facilitates bloom formation and invasion success of G. semen

    Seasonal genotype dynamics of a marine dinoflagellate : Pelagic populations are homogeneous and as diverse as benthic seed banks

    Get PDF
    Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%-100%) combined with intermediate to low gene diversity (0.58-0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic-pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic-pelagic coupling maintain high clonal diversity in both habitats.Peer reviewe

    Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton

    Get PDF
    It is widely accepted that alkaline phosphatase activity (APA) is an efficient indicator of phosphate limitation in freshwater phytoplankton communities. In this study, we investigated whether the response in APA to phosphate limitation differs among the taxa in a mixed phytoplankton assemblage. We used the new enzyme-labeled fluorescence (ELF) technique, which allows microscopic detection of phosphate limitation in individual cells of multiple species. The most prominent findings of this study were that alkaline phosphatase (AP) was induced in many, but not all taxa and that different taxa, as well as different cells within a single taxon, experienced different degrees of phosphate stress under the same environmental conditions. Our approach was to manipulate the limiting nutrient in a natural freshwater phytoplankton community by incubating lake water in the laboratory. We induced nitrogen (N) or phosphate limitation through additions of inorganic nutrients. Both the ELF assay and bulk APA indicated that the lake phytoplankton were not phosphate limited at the start of the experiment. During the experiment, several chlorophyte taxa (e.g., Eudorina and an unidentified solitary spiny coccoid) were driven to phosphate limitation when inorganic N was added, as evidenced by a higher percentage of ELF-labeled cells relative to controls, whereas other chlorophyte taxa such as Actinastrum and Dicryosphaerium were not phosphate stressed under these conditions. In the phosphate-limited treatments, little or no ELF labeling was observed in any cyanobacterial taxa. Furthermore, all taxa observed after the ELF labeling procedure (>10-mum fraction) were labeled with ELF at least on one occasion, demonstrating the wide applicability of the ELF method. By using ELF labeling in tandem with bulk APA, the resolution and analysis of phosphate limitation was increased, allowing the identification of specific phosphate-stressed taxa

    Comprehensive analysis of chemical and biological problems associated with browning agents used in aquatic studies

    Get PDF
    Inland waters receive and process large amounts of colored organic matter from the terrestrial surroundings. These inputs dramatically affect the chemical, physical, and biological properties of water bodies, as well as their roles as global carbon sinks and sources. However, manipulative studies, especially at ecosystem scale, require large amounts of dissolved organic matter with optical and chemical properties resembling indigenous organic matter. Here, we compared the impacts of two leonardite products (HuminFeed and SuperHume) and a freshly derived reverse osmosis concentrate of organic matter in a set of comprehensive mesocosm- and laboratory-scale experiments and analyses. The chemical properties of the reverse osmosis concentrate and the leonardite products were very different, with leonardite products being low and the reverse osmosis concentrate being high in carboxylic functional groups. Light had a strong impact on the properties of leonardite products, including loss of color and increased particle formation. HuminFeed presented a substantial impact on microbial communities under light conditions, where bacterial production was stimulated and community composition modified, while in dark potential inhibition of bacterial processes was detected. While none of the browning agents inhibited the growth of the tested phytoplankton Gonyostomum semen, HuminFeed had detrimental effects on zooplankton abundance and Daphnia reproduction. We conclude that the effects of browning agents extracted from leonardite, particularly HuminFeed, are in sharp contrast to those originating from terrestrially derived dissolved organic matter. Hence, they should be used with great caution in experimental studies on the consequences of terrestrial carbon for aquatic systems

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing

    Get PDF
    International audienceCurrent sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans

    Toxicity in Peridinium aciculiferum - an adaptive strategy to outcompete other winter phytoplankton?

    Get PDF
    Freshwater dinoflagellates may form dense blooms during winter in ice-covered lakes. Unlike their marine counterparts, freshwater dinoflagellates are rarely considered to be potential toxin producers. Here we tested whether the winter species Peridinium aciculiferum produces a toxin(s) and investigated the potential adaptive function of that toxin, i.e., predator defense or inhibition of competitors (allelopathy). Using traditional toxicity bioassays (Artemia toxicity test and hemolytic activity assay). we detected the production of a toxic substance by P. aciculiferum cells from both the field and from laboratory cultures. Cultures deprived of phosphorus and in stationary phase showed highest toxicity. Potential predators, such as Daphnia galeata (Cladocera) and Eudiaptomus graciloides (Copepoda), were apparently not harmed by P. aciculiferum toxicity. However, the naturally coaccurring competitor Rhodomonas lacustris (Cryptophyceae) was killed by P. aciculiferum. An allelopathic substance(s) caused the cells of R. lacustris to form blisters and subsequently lyse. We concluded that our results support the hypothesis that P. aciculiferum is allelopathic, but not that toxins serve as predator defense. We therefore suggest that allelopathy may be an adaptive strategy of winter dinoflagellates, which could allow them to outcompete other phytoplankton species and thereby dominate the algal biomass

    SPECIES ASSEMBLIES AND SEASONAL SUCCESSION OF DINOFLAGELLATES

    No full text
    Seasonality of dinoflagellate blooms and dinoflagellate assemblies are not random. Yet, bloom events and the specific appearance of species is difficult to predict and sometimes appears stochastic. Nevertheless, it has been established that both abiotic and biotic factors determine species assemblies, as well as the available species pool. The physical environment, especially nutrients and mixing/light depth largely determines when and where dinoflagellates are present. As a response to the environemnt, adaptive strategies (C, S, R) have evolved, allowing different species to be favored in different conditions. Based on functional traits, with cell size being a so called master trait, species can be categorized into different life-forms, which in turn can be predicted for different conditions. Among biotic factors, mortality due to natural enemies, including both grazers and parasites are involved in species succession. In addition both competition among dinoflagellates and with other phytoplankton groups can determine which species occur. Finally, life-cycle transitions, especially for cystproducing (meroplanktonic) species can be used to explain fine-scale species replacement. The latter together with species-specific parasite infections provide promise to untangle the processes behind apparently stochastic events
    • 

    corecore