57 research outputs found

    Sustainability and Justice: Challenges and Opportunities for an Open STEM Education

    Get PDF
    Open educational resources, or OER, are teaching materials that reside in the public do-main and are available under an open license. While the creation of high-quality materials and cyberinfrastructure to share these resources is important, OER are much more than static resource repositories. Vibrant OER communities function as collaboration hubs and often include librarians, instructional technologists, instructors, education researchers, funders, open-source software developers, and college administrators. Together, these in-dividuals work as a community to respond to changes in the education landscape, support student learning impacts both in terms of cost savings and student retention, and solve issues related to broadly sharing open resources on the web. This essay provides general information about OER, describes communities developing OER for science, technology, engineering, and mathematics education, and presents insights about sustainability chal-lenges. The sustainability challenges are organized according to multiple dimensions: cultural and social, economic and financial, and technological and environmental. In addition, OER provide important opportunities to address and promote social justice and open and accessible education philosophies. Knowing more about the OER landscape, sustainability challenges, and educational justice opportunities can help instructors use and contribute to this growing movement to reshape the landscape of undergraduate education

    The SDSS-IV in 2014: a demographic snapshot

    Get PDF
    Many astronomers now participate in large international scientific collaborations, and it is important to examine whether these structures foster a healthy scientific climate that is inclusive and diverse. The Committee on the Participation of Women in the Sloan Digital Sky Survey (CPWS) was formed to evaluate the demographics and gender climate within SDSS-IV, one of the largest and most geographically distributed astronomical collaborations. In April 2014, the CPWS administered a voluntary demographic survey to establish a baseline for the incipient SDSS-IV, which began observations in July 2014. We received responses from 250 participants (46% of the active membership). Half of the survey respondents were located in the United States or Canada and 30% were based in Europe. Approximately 65% were faculty or research scientists and 31% were postdocs or graduate students. Eleven percent of survey respondents considered themselves to be an ethnic minority at their current institution. Twenty-five percent of the SDSS-IV collaboration members are women, a fraction that is consistent with the US astronomical community, but substantially higher than the fraction of women in the International Astronomical Union (16%). Approximately equal fractions of men and women report holding positions of leadership in the collaboration. When binned by academic age and career level, men and women also assume leadership roles at approximately equal rates, in a way that increases steadily for both genders with increasing seniority. In this sense, SDSS-IV has been successful in recruiting leaders that are representative of the collaboration. That said, it is clear that more progress needs to be made towards achieving gender balance and increasing diversity in the field of astronomy, and there is still room for improvement in the membership and leadership of SDSS-IV. For example, at the highest level of SDSS-IV leadership, women disproportionately assume roles related to education and public outreach. The goal of the CPWS is to use these initial data to establish a baseline for tracking demographics over time as we work to assess and improve the climate of SDSS-IV

    The SDSS-IV MaNGA sample : design, optimization, and usage considerations

    Get PDF
    We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing S/N, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend oni-band absolute magnitude (Mi), or, for a small subset of our sample, Mi and color (NUV-i). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to Mi and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (Re),respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range 5 x 108 ≤ M⋆ ≤ 3 x 1011 M⊙ /h2 and are sampled at median physical resolutions of 1.37 kpc and 2.5 kpc for the Primary and Secondary samples respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume limited sample.PostprintPeer reviewe

    SDSS-IV from 2014 to 2016: A Detailed Demographic Comparison over Three Years

    Full text link
    The Sloan Digital Sky Survey (SDSS) is one of the largest international astronomy organizations. We present demographic data based on surveys of its members from 2014, 2015 and 2016, during the fourth phase of SDSS (SDSS-IV). We find about half of SDSS-IV collaboration members were based in North America, a quarter in Europe, and the remainder in Asia and Central and South America. Overall, 26-36% are women (from 2014 to 2016), up to 2% report non-binary genders. 11-14% report that they are racial or ethnic minorities where they live. The fraction of women drops with seniority, and is also lower among collaboration leadership. Men in SDSS-IV were more likely to report being in a leadership role, and for the role to be funded and formally recognized. SDSS-IV collaboration members are twice as likely to have a parent with a college degree, than the general population, and are ten times more likely to have a parent with a PhD. This trend is slightly enhanced for female collaboration members. Despite this, the fraction of first generation college students (FGCS) is significant (31%). This fraction increased among collaboration members who are racial or ethnic minorities (40-50%), and decreased among women (15-25%). SDSS-IV implemented many inclusive policies and established a dedicated committee, the Committee on INclusiveness in SDSS (COINS). More than 60% of the collaboration agree that the collaboration is inclusive; however, collaboration leadership more strongly agree with this than the general membership. In this paper, we explain these results in full, including the history of inclusive efforts in SDSS-IV. We conclude with a list of suggested recommendations based on our findings, which can be used to improve equity and inclusion in large astronomical collaborations, which we argue is not only moral, but will also optimize their scientific output.Comment: 30 pages, 9 figures, accepted in PAS

    Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA\u27s key science goals and present prototype observations to demonstrate MaNGA\u27s scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12\u27\u27 (19 fibers) to 32\u27\u27 (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2\u27\u27 fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * ≳ 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA\u27s ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA\u27s spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore