1,716 research outputs found

    Interest Rate Changes and Islamic Stock Return with Wavelets: the Case of Indonesia

    Full text link
    In a global economy, shocks affect many financial sectors including stock market through the discount factor of the cash flow model. As in the conventional stock market where global shocks play a significant role in influencing stock prices, it also occurs in the Islamic stocks. This paper investigates the linkage between interest rate and stock returns for Indonesia with the sample period from January 2005 to December 2012 in the time-frequency domain by using a number of cross-wavelet tools. The results reveal that the similar response of the Islamic and conventional equity finance to the global shock. In turn, the result depicts that the Islamic equity market is also sensitive to the monetary tools used in the conventional system. The results have useful implications for policy makers in the face of a global financial crisis to prevent the steep fall of stock market price by increasing or decreasing the interest rate. In other words, since interest rate changes have an impact in the stock market, harmonisation of monetary policies mainly in developed countries can contribute to a decrease in the contagion potential on the stock market

    Antioxidant and cytotoxic activities of Artemisia monosperma L. and Tamarix aphylla L. essential oils

    Get PDF
    Essential (volatile) oil from leaves of Artemisia monosperma L. belonging to family Asteraceae, and aerial parts of Tamarix aphylla L. (Athel) belonging to family Tamaricaceae were collected from the desert of Ha'il region, northern region of Saudi Arabia, hydro distilled by Clevenger apparatus and analysed by means of GC-MS techniques. Antioxidant activities of essential oils of A. monosperma and T. aphylla compared with ascorbic acid and butylated hydroxytoluene (BHT) as reference antioxidant compound were determined by method of DPPH radical scavenging assay and ABTS assay. In vitro screening of potential cytotoxicity of essential oils was also evaluated against human promyelocytic leukaemia cell lines (HL60 and NB4). The GC/MS analysis of A. monosperma essential oil resulted in identification of 61 components predominated mainly by β-Pinene as principal component (29.87%) and T. aphylla resulted in identification of 37 components of essential oil predominated mainly by 6,10,14- trimethyl-2-pentadecanone (21.43%) as principal component. Antioxidant activity as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 2,2 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) increased with increasing essential oil concentrations of A. monosperma and T. aphylla (25, 50, 75, 100 and 200 μg mL-1). The most pronounced increases detected in the high concentrations of the two essential oils. Biologically, essential oil extracts exhibited cytotoxicity effects in dose dependent manner against human promyelocytic leukaemia cell lines (HL60 and NB4). In conclusion, A. monosperma and T. aphylla essential oils could be valuable source for cytotoxic agents with high safety and selective cytotoxicity profiles

    Improvement of Gasoline Octane Number by Using Organic Compounds

    Get PDF
    The toxic lead additives to gasoline are no longer used in many countries around the world. Many other countries are now phasing out the lead in gasoline. Although the lead fuel is still in use in Iraq, several plans are considered to phase out the lead. The use of organic compounds to replace the lead additives in gasoline is considered now as an option in Iraqi refineries. The main objective of this project was preparation of premium gasoline, by blending of gasoline with Alternative additives (alcohol, aromatic) to enhancing octane number of Al-Doura gasoline pool. Improved gasoline was tested by ASTM standard method which includes octane number measuring by CFR engine analyzer. Gasoline pool RON (80) was used and selective components were added to the gasoline pool (1-3%) to improving it octane, such as ethanol, methanol,isopropanol,isobutanol, benzene, nitrobenzene, Aniline, and nitro aniline. Octane number of blends was measured by CFR engine. Mixture of alternative additives was prepared and adding in 1-3%vol to the gasoline pool. It was found that the additives show significant improvement of octane number of gasoline but the important increasing of RON was shown on use mixture of alcohols and aniline

    Hepatoprotective Role of Carvedilol against Ischemic Hepatitis Associated with Acute Heart Failure via Targeting miRNA-17 and Mitochondrial Dynamics-Related Proteins: An In Vivo and In Silico Study

    Get PDF
    Acute heart failure (AHF) is one of the most common diseases in old age that can lead to mortality. Systemic hypoperfusion is associated with hepatic ischemia–reperfusion injury, which may be irreversible. Ischemic hepatitis due to AHF has been linked to the pathogenesis of liver damage. In the present study, we extensively investigated the role of mitochondrial dynamics-related proteins and their epigenetic regulation in ischemic liver injury following AHF and explored the possible hepatoprotective role of carvedilol. The biochemical analysis revealed that the ischemic liver injury following AHF significantly elevated the activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes, the level of total and direct bilirubin, and the expression of hepatic mitogen-activated protein kinase (MAPK), dynamin-1-like protein (DNM1L), and hepatic miRNA-17. At the same time, it significantly reduced the serum albumin level, the activity of hepatic superoxide dismutase (SOD), and the expression of mitochondrial peroxisome proliferator-activated receptor-1α (PGC-1α), and mitofusin 2 (Mtf2). The histological examination of the liver tissue revealed degenerated hepatocytes. Interestingly, administration of carvedilol either prior to or after isoprenaline-induced AHF significantly improved the liver function and reversed the deterioration effect of AHF-induced ischemic hepatitis, as demonstrated by biochemical, immunohistochemical, and histological analysis. Our results indicated that the hepatoprotective effect of carvedilol in ameliorating hepatic ischemic damage could be attributed to its ability to target the mitochondrial dynamics-related proteins (Mtf2, DNM1L and PGC-1α), but also their epigenetic regulator miRNA-17. To further explore the mode of action of carvedilol, we have investigated, in silico, the ability of carvedilol to target dynamin-1-like protein and mitochondrial dynamics protein (MID51). Our results revealed that carvedilol has a high binding affinity (−14.83 kcal/mol) toward the binding pocket of DNM1L protein. In conclusion, our study highlights the hepatoprotective pharmacological application of carvedilol to attenuate ischemic hepatitis associated with AHF.Faculty of Medicine, and Faculty of Science, Ain Shams UniversityPrincess Nourah bint Abdulrahman Universit

    Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study

    Get PDF
    Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain–like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.Peer Reviewe

    Intensity standardization methods in magnetic resonance imaging of head and neck cancer

    Get PDF
    BACKGROUND AND PURPOSE: Conventional magnetic resonance imaging (MRI) poses challenges in quantitative analysis because voxel intensity values lack physical meaning. While intensity standardization methods exist, their effects on head and neck MRI have not been investigated. We developed a workflow based on healthy tissue region of interest (ROI) analysis to determine intensity consistency within a patient cohort. Through this workflow, we systematically evaluated intensity standardization methods for MRI of head and neck cancer (HNC) patients.MATERIALS AND METHODS: Two HNC cohorts (30 patients total) were retrospectively analyzed. One cohort was imaged with heterogenous acquisition parameters (HET cohort), whereas the other was imaged with homogenous acquisition parameters (HOM cohort). The standard deviation of cohort-level normalized mean intensity (SD NMI c), a metric of intensity consistency, was calculated across ROIs to determine the effect of five intensity standardization methods on T2-weighted images. For each cohort, a Friedman test followed by a post-hoc Bonferroni-corrected Wilcoxon signed-rank test was conducted to compare SD NMI c among methods. RESULTS: Consistency (SD NMI c across ROIs) between unstandardized images was substantially more impaired in the HET cohort (0.29 ± 0.08) than in the HOM cohort (0.15 ± 0.03). Consequently, corrected p-values for intensity standardization methods with lower SD NMI c compared to unstandardized images were significant in the HET cohort (p &lt; 0.05) but not significant in the HOM cohort (p &gt; 0.05). In both cohorts, differences between methods were often minimal and nonsignificant. CONCLUSIONS: Our findings stress the importance of intensity standardization, either through the utilization of uniform acquisition parameters or specific intensity standardization methods, and the need for testing intensity consistency before performing quantitative analysis of HNC MRI.</p

    Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study

    Get PDF
    Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain–like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins

    Head and neck cancer predictive risk estimator to determine control and therapeutic outcomes of radiotherapy (HNC-PREDICTOR):development, international multi-institutional validation, and web implementation of clinic-ready model-based risk stratification for head and neck cancer

    Get PDF
    Background: Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a ‘one-dose-fits-all’ approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international ‘big-data’ to facilitate risk-based stratification of patients with HNC. Methods: The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tumour control (secondary end-points); serially, imaging features were considered for optional model improvement. Finally, patients were stratified into high-, intermediate-, and low-risk groups. Results: Performance score, AJCC8th stage, pack-years, and Age were identified as predictors for overall survival, demonstrating good performance in both the training cohort (c-index = 0.72 [95% CI, 0.66–0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69–0.83], 0.73 [0.68–0.77], and 0.75 [0.68–0.80]). Excellent stratification of patients with HNC into high, intermediate, and low mortality risk was achieved; with 5-year overall survival rates of 17–46% for the high-risk group compared to 92–98% for the low-risk group. The addition of morphological image feature further improved the performance (c-index = 0.73 [0.64–0.81]). These models are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/ Conclusions: Robust model-based prediction was able to stratify patients with HNC in distinct high, intermediate, and low mortality risk groups. This can effectively be capitalised for personalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore