77 research outputs found

    A Fatal Case of Severe Hemolytic Disease of Newborn Associated with Anti-Jkb

    Get PDF
    The Kidd blood group is clinically significant since the Jk antibodies can cause acute and delayed transfusion reactions as well as hemolytic disease of newborn (HDN). In general, HDN due to anti-Jkb incompatibility is rare and it usually displays mild clinical symptoms with a favorable prognosis. Yet, we apparently experienced the second case of HDN due to anti-Jkb with severe clinical symptoms and a fatal outcome. A female patient having the AB, Rh(D)-positive boodtype was admitted for jaundice on the fourth day after birth. At the time of admission, the patient was lethargic and exhibited high pitched crying. The laboratory data indicated a hemoglobin value of 11.4 mg/dL, a reticulocyte count of 14.9% and a total bilirubin of 46.1 mg/dL, a direct bilirubin of 1.1 mg/dL and a strong positive result (+++) on the direct Coomb's test. As a result of the identification of irregular antibody from the maternal serum, anti-Jkb was detected, which was also found in the eluate made from infant's blood. Despite the aggressive treatment with exchange transfusion and intensive phototherapy, the patient died of intractable seizure and acute renal failure on the fourth day of admission. Therefore, pediatricians should be aware of the clinical courses of hemolytic jaundice due to anti-Jkb, and they should be ready to treat this disease with active therapeutic interventions

    Delivery Site of Perivascular Endothelial Cell Matrices Determines Control of Stenosis in a Porcine Femoral Stent Model

    Get PDF
    PURPOSE: High restenosis rates are a major limitation of peripheral interventions. Endothelial cells, grown within gelatin matrices and implanted onto the adventitia of injured vessels, inhibit stenosis in experimental models. To determine if this technology could be adapted for minimally invasive procedures, we compared the effects of cells in an implantable sponge to an injectable formulation and investigated the importance of delivery site in a stent model. MATERIALS AND METHODS: Stents were implanted in the femoral arteries of 30 pigs followed by perivascular implantation of sponges or injection of particles containing allogeneic endothelial cells. Controls received acellular matrices or nothing. The effects of delivery site were assessed by injecting cellular matrices into or adjacent to the perivascular tissue, or into the neighboring muscle. Animals were sacrificed after 28 days. Pre-sacrifice angiograms and tissue sections were evaluated for stenosis. RESULTS: Arteries treated with cellular matrices had a 55 – 63% decrease in angiographic stenosis (P<0.05) and a 38 – 43% reduction (P<0.05) in histologic stenoses compared to controls. Intimal area was greatest when cellular matrices were delivered into the muscle (6.35 ± 0.95 mm2) compared to into or adjacent to the perivascular tissue (4.05 ± 0.56 mm2 and 4.73 ± 0.53 mm2, respectively, P < 0.05). CONCLUSIONS: Perivascular endothelial-cell matrices reduced stenosis after stent-induced injury. The effects were not dependent on the formulation but appeared to be dependent upon delivery site. Minimally invasive injections of endothelial-cell matrices to the adventitia of arteries following peripheral interventions may decrease restenosis rates.National Institutes of Health (U.S.) (Grant GM 49039

    SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs

    Get PDF
    Multidetector row computed tomography (MDCT) is increasingly taking a central role in identifying subphenotypes within chronic obstructive pulmonary disease (COPD), asthma, and other lung-related disease populations, allowing for the quantification of the amount and distribution of altered parenchyma along with the characterization of airway and vascular anatomy. The embedding of quantitative CT (QCT) into a multicenter trial with a variety of scanner makes and models along with the variety of pressures within a clinical radiology setting has proven challenging, especially in the context of a longitudinal study. SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), sponsored by the National Institutes of Health, has established a QCT lung assessment system (QCT-LAS), which includes scanner-specific imaging protocols for lung assessment at total lung capacity and residual volume. Also included are monthly scanning of a standardized test object and web-based tools for subject registration, protocol assignment, and data transmission coupled with automated image interrogation to assure protocol adherence. The SPIROMICS QCT-LAS has been adopted and contributed to by a growing number of other multicenter studies in which imaging is embedded. The key components of the SPIROMICS QCT-LAS along with evidence of implementation success are described herein. While imaging technologies continue to evolve, the required components of a QCT-LAS provide the framework for future studies, and the QCT results emanating from SPIROMICS and the growing number of other studies using the SPIROMICS QCT-LAS will provide a shared resource of image-derived pulmonary metrics

    MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment

    Get PDF
    Rather than targeting tumour cells directly, elements of the tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here we report a unique mechanism by which ectopic microRNA-103 can manipulate tumour-associated endothelial cells to enhance tumour cell death. Using gain-and-loss of function approaches, we show that miR-103 exacerbates DNA damage and inhibits angiogenesis in vitro and in vivo. Local, systemic or vascular-targeted delivery of miR-103 in tumour-bearing mice decreased angiogenesis and tumour growth. Mechanistically, miR-103 regulation of its target gene TREX1 in endothelial cells governs the secretion of pro-inflammatory cytokines into the tumour microenvironment. Our data suggest that this inflammatory milieu may potentiate tumour cell death by supporting immune activation and inducing tumour expression of Fas and TRAIL receptors. Our findings reveal miR-mediated crosstalk between vasculature and tumour cells that can be exploited to improve the efficacy of chemotherapy and radiation.United States. National Institutes of Health (R00HL112962)United States. National Institutes of Health (R01 HL57900)Oregon Health & Science University. Knight Cancer Institute (2015-Dive-Knight-01

    The Role of Sensorimotor Difficulties in Autism Spectrum Conditions

    Get PDF
    AbstractIn addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties; repetitive motor movements and atypical reactivity to sensory input (APA, 2013). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. Firstly, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Secondly, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Thirdly, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviours such as effectively coordinating eye contact with speech and gesture, interpreting others’ behaviour and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC, and their contribution to the development and maintenance of ASC

    Ultra-rare genetic variation in common epilepsies: a case-control sequencing study

    Get PDF
    BACKGROUND:Despite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies. METHODS:We did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies. FINDINGS:We separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7-3·2, p=9·1 × 10-8; familial non-acquired focal epilepsy 3·6, 2·7-4·9, p=1·1 × 10-17). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting for the control carrier rate, we estimate that these five genes contribute to the risk of epilepsy in approximately 8% of individuals with familial non-acquired focal epilepsy. Our analyses showed that no individual gene was significantly associated with familial genetic generalised epilepsy; however, known epilepsy genes had lower p values relative to the rest of the protein-coding genes (p=5·8 × 10-8) that were lower than expected from a random sampling of genes. INTERPRETATION:We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear connection between the genetics of common and rare, severe epilepsies, and shows that the variants responsible for epilepsy risk are exceptionally rare in the general population. Our results suggest that the emerging paradigm of targeting of treatments to the genetic cause in rare devastating epilepsies might also extend to a proportion of common epilepsies. These findings might allow clinicians to broadly explain the cause of these syndromes to patients, and lay the foundation for possible precision treatments in the future. FUNDING:National Institute of Neurological Disorders and Stroke (NINDS), and Epilepsy Research UK

    Cloning and expression of a rat brain GABA transporter

    No full text
    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter gamma-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated [^3H]GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium-and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules
    • …
    corecore