94 research outputs found

    Composite Medicine “Azisal” Based on Azithromycin and Salicylic Acid

    Get PDF
    Salicylic acid essentially is obtained under the pressure by the method of Kolbe-Schmidt. One of the biggest drawbacks of this method is the necessity of synthesizing sodium phenolate in advance which involves considerable technological difficulties: water predistillation under vacuum and also the dry sodium phenolate getting very hygroscopic. It is therefore of interest to look for more convenient alternative pathways for the synthesis of salicylic acid, excluding the use of sodium phenolate and this drawback is eliminated by using sodium and potassium salts of ethyl carbonic acid as carboxylation body. Consequently, according to the more convenient method we obtained the salicylic acid. In medicine, 1% solution of salicylic acid in 70 % alcohol called salicylic alcohol is used as an antiseptic. We investigated the antimicrobial activity of a 1% solution of salicylic acid in various concentrations of ethanol (40%, 50%, 60%, 70%, 80% and 90%) in order to determine the effect of different concentrations of ethanol on the antimicrobial activity of salicylic acid. The experiment proved that 1% solution of salicylic acid in various concentrations of ethanol (40-90%) to the appropriate strains of bacteria acts with the same activity regardless of the concentration of ethanol (40%, 50%, 60%, 70%, 80% and 90%). These actions of the acid are due to its solubility in alcohols of different concentrations and complete disintegration of salicylic acid molecules into ions. Thus, on the basis of antimicrobial research the necessity of preparation of 1% solution of salicylic acid in 40% alcohol is proved as the drug is cheaper and cost-effective to produce. The technology of the new composition of the drug “Azisal” consisting of 0.25 g azithromycin and 1.0 g salicylic acid in 60% ethanol was developed, in a similar way solution of azithromycin in different concentrations 0.25, 0.5, 0.75, 1.0% in 60% ethanol were prepared and their antimicrobial activities were defined. The comparison of their antimicrobial activity shows the effectiveness of the composite product called “Azisal”

    Study of the chemical composition of various types of berries

    Get PDF
    Berries play an important role in antioxidant protection, prevention and treatment of diseases of the human body, so many types of berries are widely used both in food and other industries.   The purpose of this article is to study the chemical composition of berries of various species growing on the territory of Kazakhstan.   The article presents the results of the organoleptic evaluation of berries, in a comparative aspect, the mineral and carbohydrate composition is studied, and the antioxidant activity of various types of berries is determined. The studies used generally accepted organoleptic, chemical and analytical methods. The results of the experiments performed will be used in the development of requirements for raw materials for processing, namely, berries of Kazakhstan production during freeze-drying

    Study of the chemical composition of freeze-dried berries for enriching instant cereals

    Get PDF
    Grain crops are a good source of carbohydrates and proteins, are important sources of B vitamins and vitamin E, so these crops are widely used for the production of instant cereals, mainly in the form of extruded products. Fruits or vegetables are often used to enrich cereals with vitamins, antioxidants, fiber and phytochemicals. The article presents the results of studies of the chemical composition of freeze-dried berries (blueberries, strawberries, raspberries, currants and sea buckthorn). Studies of their mineral mineral composition showed that the amount of mineral compounds in all samples was within the permissible concentration. The highest content of zinc, magnesium, iron and selenium is observed in sea buckthorn berries (2.12 mg/kg, 198.71 mg/100g, 13.55 mg/kg and 5.08mg/100g, respectively). The concentration of copper in currants is 408.93mg/kg, which is significantly higher than in other berries. The calcium content is almost at the same level in all samples with the exception of currants and sea buckthorn, in which these indicators are lower. The iodine content is absent in strawberries and blueberries. It was found that sea buckthorn has high levels of vitamin A and E among the sublimated berries (796.01 mg/g and 17.09 mg/g, respectively). The highest content of vitamins B3 and B5 was found in currants (1,591mg/g, 0.308 mg/g). Strawberries have a high antioxidant activity in comparison with other berries (3.94 mg / g). Strawberries also have the highest total carbohydrate content (28.56 %). These products are promising as components of instant porridge, since sublimation allows you to preserve nutrients and useful properties in berries

    Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores

    Get PDF
    Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC− toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux

    Cytoskeleton as an Emerging Target of Anthrax Toxins

    Get PDF
    Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity

    Bordetella Adenylate Cyclase Toxin Mobilizes Its β2 Integrin Receptor into Lipid Rafts to Accomplish Translocation across Target Cell Membrane in Two Steps

    Get PDF
    Bordetella adenylate cyclase toxin (CyaA) binds the αMβ2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin ‘translocation intermediate’, which can be ‘locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the ‘intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the ‘translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol

    Bacterial Toxins as Pathogen Weapons Against Phagocytes

    Get PDF
    Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.This work was supported by FEDER funds through Programa Operational Factores de Competitividade - COMPETE and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia (project PTDC/BIA-MIC/3463/2012 FCOMP-01-0124-FEDER-028364; to AV). Research in the groups of Molecular Microbiology and Fish Immunology and Vaccinology is supported by national funds through FCT Fundacao para Ciencia e a Tecnologia/MEC - Ministerio da Educacao e Ciencia and co-funded by FEDER within the partnership agreement: PT2020 related with the research unit number 4293. The Group of Molecular Microbiology also receives support from a Research Grant 2014 by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (to SS) and the PT2020 research project Infect-ERA/0001/2013 PROANTILIS. AdV received the FCT fellowship SFRH/BPD/95777/2013 by national funds through FCT - Fundacao para a Ciencia e a Tecnologia/MEC - Ministerio da Educacao e Ciencia and co-funded by QREN and POPH (Programa Operational Potential Humano). SS is supported by FCT-Investigator program

    A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    No full text
    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence

    The <i>Salmonella</i> Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members

    No full text
    <div><p><i>Salmonella</i> Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of <i>Salmonella</i> Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a <i>Salmonella</i> mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.</p></div

    Proposed model for SopA action.

    No full text
    <p>After its delivery by the <i>S</i>. Typhimurium type III secretion system, SopA targets TRIM56 and/or TRIM65 and through ubiquitination, enhances their ability to modulate RIG-I and/or MDA-5-dependendant signal transduction pathways leading to pro-inflammatory cytokine production. The modulatory activity of SopA may require the prior stimulation of RIG-I and/or MDA-5 by other agonists such as nucleic acids.</p
    corecore