87 research outputs found

    Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position

    Get PDF
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.Peer reviewe

    Trophic ecology of piscivorous Arctic charr (Salvelinus alpinus (L.)) in subarctic lakes with contrasting food-web structures

    Get PDF
    The trophic ecology of piscivorous Arctic charr (Salvelinus alpinus (L.); charr) in the food webs of large subarctic lakes is not well understood. We assessed charr diets, parasites, growth, maturity, and stable isotope ratios in Fennoscandian subarctic lakes dominated by monomorphic or polymorphic whitefish (Coregonus lavaretus (L.)) populations. Charr density was low in all lakes, except in profundal habitats. Charr shifted to piscivory at small size (16-25 cm total length) and consumed a range of prey-fish sizes (2-25 cm). Cannibalism was observed in a few individuals from one monomorphic whitefish lake. Charr matured at 37-51 cm (5-8 years old), grew to 52-74 cm maximum observed length and 47-83 cm asymptotic length. Charr increased total area of convex hull and core stable isotopic diversity area of the fish community by 51-98% and 44-51% in monomorphic whitefish lakes, but only 8-11% and 7-10% in polymorphic whitefish lakes. The difference was due to increasing food-chain length in monomorphic whitefish lakes, whereas reliance on littoral carbon did not change. Charr were the top piscivores in monomorphic whitefish lakes, but played a less important role in polymorphic whitefish lakes, which contained a more diverse predator fauna.Peer reviewe

    From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'

    Get PDF
    Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space-for-time analysis of food-web structure in 30 lakes situated across a temperature-productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3 degrees C, precipitation +30% and nutrient +45 mu g L-1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic-derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.Peer reviewe

    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity : Spatial patterns and environmental factors

    Get PDF
    Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of beta diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high alpha diversity generally also had high beta diversity, and turnover was the most important component of beta diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes.Peer reviewe

    Multitrophic biodiversity patterns and environmental descriptors of sub-Arctic lakes in northern Europe

    Get PDF
    Arctic and sub-Arctic lakes in northern Europe are increasingly threatened by climate change, which can affect their biodiversity directly by shifting thermal and hydrological regimes, and indirectly by altering landscape processes and catchment vegetation. Most previous studies of northern lake biodiversity responses to environmental changes have focused on only a single organismal group. Investigations at whole-lake scales that integrate different habitats and trophic levels are currently rare, but highly necessary for future lake monitoring and management. We analysed spatial biodiversity patterns of 74 sub-Arctic lakes in Norway, Sweden, Finland, and the Faroe Islands with monitoring data for at least three biological focal ecosystem components (FECs)—benthic diatoms, macrophytes, phytoplankton, littoral benthic macroinvertebrates, zooplankton, and fish—that covered both pelagic and benthic habitats and multiple trophic levels. We calculated the richnessrelative (i.e. taxon richness of a FEC in the lake divided by the total richness of that FEC in all 74 lakes) and the biodiversity metrics (i.e. taxon richness, inverse Simpson index (diversity), and taxon evenness) of individual FECs using presence–absence and abundance data, respectively. We then investigated whether the FEC richnessrelative and biodiversity metrics were correlated with lake abiotic and geospatial variables. We hypothesised that (1) individual FECs would be more diverse in a warmer and wetter climate (e.g. at lower latitudes and/or elevations), and in hydrobasins with greater forest cover that could enhance the supply of terrestrial organic matter and nutrients that stimulated lake productivity; and (2) patterns in FEC responses would be coupled among trophic levels. Results from redundancy analyses showed that the richnessrelative of phytoplankton, macrophytes, and fish decreased, but those of the intermediate trophic levels (i.e. macroinvertebrates and zooplankton) increased with decreasing latitude and/or elevation. Fish richnessrelative and diversity increased with increasing temporal variation in climate (temperature and/or precipitation), ambient nutrient concentrations (e.g. total nitrogen) in lakes, and woody vegetation (e.g. taiga forest) cover in hydrobasins, whereas taxon richness of macroinvertebrates and zooplankton decreased with increasing temporal variation in climate. The similar patterns detected for richnessrelative of fish, macrophytes, and phytoplankton could be caused by similar responses to the environmental descriptors, and/or the beneficial effects of macrophytes as habitat structure. By creating habitat, macrophytes may increase fish diversity and production, which in turn may promote higher densities and probably more diverse assemblages of phytoplankton through trophic cascades. Lakes with greater fish richnessrelative tended to have greater average richnessrelative among FECs, suggesting that fish are a potential indicator for overall lake biodiversity. Overall, the biodiversity patterns observed along the environmental gradients were trophic-level specific, indicating that an integrated food-web perspective may lead to a more holistic understanding of ecosystem biodiversity in future monitoring and management of high-latitude lakes. In future, monitoring should also focus on collecting more abundance data for fish and lower trophic levels in both benthic and pelagic habitats. This may require more concentrated sampling effort on fewer lakes at smaller spatial scales, while continuing to sample lakes distributed along environmental gradients.Peer reviewe

    Improved environmental status : 50 years of declining fish mercury levels in boreal and subarctic Fennoscandia

    Get PDF
    Temporally (1965–2015) and spatially (55°–70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries (n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3–7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies

    Circumpolar patterns of Arctic freshwater fish biodiversity : A baseline for monitoring

    Get PDF
    1. Climate change, biological invasions, and anthropogenic disturbance pose a threat to the biodiversity and function of Arctic freshwater ecosystems. Understanding potential changes in fish species distribution and richness is necessary, given the great importance of fish to the function of freshwater ecosystems and as a resource to humans. However, information gaps limit large-scale studies and our ability to determine patterns and trends in space and time. This study takes the first step in determining circumpolar patterns of fish species richness and composition, which provides a baseline to improve both monitoring and conservation of Arctic freshwater biodiversity. 2. Information on species presence/absence was gathered from the Circumpolar Biodiversity Monitoring Program's Freshwater Database and used to examine patterns of freshwater fish γ-, α-, and β-diversity across 234° of longitude in the Arctic. The metrics of diversity provided information on species richness and composition across hydrobasins, ecoregions, and Arctic zones. 3. Circumpolar patterns of fish species biodiversity varied with latitude, isolation, and coarse ecoregion characteristics; patterns were consistent with historic and contemporary barriers to colonisation and environmental characteristics. Gamma-diversity was lower in the high Arctic compared to lower latitude zones, but α-diversity did not decrease with increasing latitude below 71°N, reflecting glacial history. Alpha-diversity was reduced to a single species, Arctic charr Salvelinus alpinus, in ecoregions above 71°N, where γ-diversity was the lowest. Beta-diversity indicated little variation in the composition and richness of species across the High Arctic; at lower latitudes, ecoregions contained more species, although species composition turned over across large spatial extents. 4. In an analysis of five ecoregions in the circumpolar Arctic, physical isolation, and ecoregion area and topography were identified as strong drivers of γ-, α-, and β-diversity. Physical isolation reduced the γ- and α-diversity, and changes in β-diversity between adjacent locations were due mainly to losses in species richness, rather than due to differences in species composition. Heterogeneity of habitats, environmental gradients, and geographic distance probably contributed to patterns of fish dissimilarity within and across ecoregions. 5. This study presents the first analysis of large-scale patterns of freshwater fish biodiversity in the circumpolar Arctic. However, information gaps in space, time, and among taxonomic groups remain. Future inclusion of extensive archive and new data will allow future studies to test for changes and drivers of the observed patterns of biodiversity. This is important given the potential impacts of ongoing and accelerating climate change, land use, and biotic exchange on Arctic fish biodiversity

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    Get PDF
    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean F-ST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone
    corecore