225 research outputs found

    Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.

    Get PDF
    Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding

    Kunst am und im Seglerhaus

    Get PDF
    KUNST AM UND IM SEGLERHAUS Kunst am und im Seglerhaus / Bähr, Rolf (Rights reserved) (-

    Festschrift

    Get PDF
    FESTSCHRIFT Festschrift / Pritzel, Manfred (Rights reserved) (-

    Structural sustainability appraisal in BIM

    Get PDF
    The provision of Application Programming Interface (API) in BIM-enable tools can contribute to facilitating BIM-related research. APIs are useful links for running plug-ins and external programmes but they are yet to be fully exploited in expanding the BIM scope. The modelling of n-Dimensional (nD) building performance measures can potentially benefit from BIM extension through API implementations. Sustainability is one such measure associated with buildings. For the structural engineer, recent design criteria have put great emphasis on the sustainability credentials as part of the traditional criteria of structural integrity, constructability and cost. This paper examines the utilization of API in BIM extension and presents a demonstration of an API application to embed sustainability issues into the appraisal process of structural conceptual design options in BIM. It concludes that API implementations are useful in expanding the BIM scope. Also, the approach including process modelling, algorithms and object-based instantiations demonstrated in the API implementation can be applicable to other nD building performance measures as may be relevant to the various professional platforms in the construction domain

    Targeted and non-targeted proteomics to characterize the parasite proteins of Echinococcus multilocularis metacestodes.

    Get PDF
    The larval stage of the cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis. To investigate the biology of these stages and to test novel compounds, metacestode cultures represent a suitable in vitro model system. These metacestodes are vesicles surrounded by an envelope formed by the vesicle tissue (VT), which is formed by the laminated and germinal layer, and filled with vesicle fluid (VF). We analyzed the proteome of VF and VT by liquid chromatography tandem mass spectrometry (LC-MS/MS) and identified a total of 2,954 parasite proteins. The most abundant protein in VT was the expressed conserved protein encoded by EmuJ_000412500, followed by the antigen B subunit AgB8/3a encoded by EmuJ_000381500 and Endophilin B1 (protein p29). In VF, the pattern was different and dominated by AgB subunits. The most abundant protein was the AgB8/3a subunit followed by three other AgB subunits. In total, the AgB subunits detected in VF represented 62.1% of the parasite proteins. In culture media (CM), 63 E. multilocularis proteins were detected, of which AgB subunits made up 93.7% of the detected parasite proteins. All AgB subunits detected in VF (encoded by EmuJ_000381100-700, corresponding to AgB8/2, AgB8/1, AgB8/4, AgB8/3a, AgB8/3b, and AgB8/3c) were also found in CM, except the subunit encoded by EmuJ_000381800 (AgB8/5) that was very rare in VF and not detected in CM. The relative abundance of the AgB subunits in VF and CM followed the same pattern. In VT, only the subunits EmuJ_000381500 (AgB8/3a) and EmuJ_000381200 (AgB8/1) were detected among the 20 most abundant proteins. To see whether this pattern was specific to VF from in vitro cultured metacestodes, we analyzed the proteome of VF from metacestodes grown in a mouse model. Here, the AgB subunits encoded by EmuJ_000381100-700 constituted the most abundant proteins, namely, 81.9% of total protein, with the same order of abundance as in vitro. Immunofluorescence on metacestodes showed that AgB is co-localized to calcareous corpuscles of E. multilocularis. Using targeted proteomics with HA-tagged EmuJ_000381200 (AgB8/1) and EmuJ_000381100 (AgB8/2), we could show that uptake of AgB subunits from CM into VF occurs within hours

    Establishment and application of unbiased in vitro drug screening assays for the identification of compounds against Echinococcus granulosus sensu stricto.

    Get PDF
    Echinococcus multilocularis and E. granulosus s.l. are the causative agents of alveolar and cystic echinococcosis, respectively. Drug treatment options for these severe and neglected diseases are limited to benzimidazoles, which are not always efficacious, and adverse side effects are reported. Thus, novel and improved treatments are needed. In this study, the previously established platform for E. multilocularis in vitro drug assessment was adapted to E. granulosus s.s. In a first step, in vitro culture protocols for E. granulosus s.s. were established. This resulted in the generation of large amounts of E. granulosus s.s. metacestode vesicles as well as germinal layer (GL) cells. In vitro culture of these cells formed metacestode vesicles displaying structural characteristics of metacestode cysts generated in vivo. Next, drug susceptibilities of E. multilocularis and E. granulosus s.s. protoscoleces, metacestode vesicles and GL cells were comparatively assessed employing established assays including (i) metacestode vesicle damage marker release assay, (ii) metacestode vesicle viability assay, (iii) GL cell viability assay, and (iv) protoscolex motility assay. The standard drugs albendazole, buparvaquone, mefloquine, MMV665807, monepantel, niclosamide and nitazoxanide were included. MMV665807, niclosamide and nitazoxanide were active against the parasite in all four assays against both species. MMV665807 and monepantel were significantly more active against E. multilocularis metacestode vesicles, while albendazole and nitazoxanide were significantly more active against E. multilocularis GL cells. Albendazole displayed activity against E. multilocularis GL cells, but no effects were seen in albendazole-treated E. granulosus s.s. GL cells within five days. Treatment of protoscoleces with albendazole and monepantel had no impact on motility. Similar results were observed for both species with praziquantel and its enantiomers against protoscoleces. In conclusion, in vitro culture techniques and drug screening methods previously established for E. multilocularis were successfully implemented for E. granulosus s.s., allowing comparisons of drug efficacy between the two species. This study provides in vitro culture techniques for the reliable generation of E. granulosus s.s. metacestode vesicles and GL cell cultures and describes the validation of standardized in vitro drug screening methods for E. granulosus s.s

    Transforming growth factor-b signalling regulates protoscolex formation in the Echinococcus multilocularis metacestode

    Get PDF
    The lethal zoonosis alveolar echinococcosis (AE) is caused by tumor-like, infiltrative growth of the metacestode larval stage of the tapeworm Echinococcus multilocularis. We previously showed that the metacestode is composed of posteriorized tissue and that the production of the subsequent larval stage, the protoscolex, depends on re-establishment of anterior identities within the metacestode germinative layer. It is, however, unclear so far how protoscolex differentiation in Echinococcus is regulated. We herein characterized the full complement of E. multilocularis TGFb/BMP receptors, which is composed of one type II and three type I receptor serine/threonine kinases. Functional analyzes showed that all Echinococcus TGFb/BMP receptors are enzymatically active and respond to host derived TGFb/BMP ligands for activating downstream Smad transcription factors. In situ hybridization experiments demonstrated that the Echinococcus TGFb/BMP receptors are mainly expressed by nerve and muscle cells within the germinative layer and in developing brood capsules. Interestingly, the production of brood capsules, which later give rise to protoscoleces, was strongly suppressed in the presence of inhibitors directed against TGFb/BMP receptors, whereas protoscolex differentiation was accelerated in response to host BMP2 and TGFb. Apart from being responsive to host TGFb/BMP ligands, protoscolex production also correlated with the expression of a parasite-derived TGFb-like ligand, EmACT, which is expressed in early brood capsules and which is strongly expressed in anterior domains during protoscolex development. Taken together, these data indicate an important role of TGFb/BMP signalling in Echinococcus anterior pole formation and protoscolex development. Since TGFb is accumulating around metacestode lesions at later stages of the infection, the host immune response could thus serve as a signal by which the parasite senses the time point at which protoscoleces must be produced. Overall, our data shed new light on molecular mechanisms of host-parasite interaction during AE and are relevant for the development of novel treatment strategies
    corecore