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ABSTRACT: Structure−activity profiles for the phytohormone
auxin have been collected for over 70 years, and a number of
synthetic auxins are used in agriculture. Auxin classification
schemes and binding models followed from understanding auxin
structures. However, all of the data came from whole plant
bioassays, meaning the output was the integral of many different
processes. The discovery of Transport Inhibitor-Response 1
(TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin
perception and the role of auxin as molecular glue in the assembly
of co-receptor complexes has allowed the development of a
definitive quantitative structure−activity relationship for TIR1 and
AFB5. Factorial analysis of binding activities offered two
uncorrelated factors associated with binding efficiency and binding
selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is
related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based
on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to
differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes,
suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and
indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der
Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for
the mechanism of auxin binding.

The identification of Transport Inhibitor Response 1
(TIR1) as a receptor for the small hormonal ligands in

the auxin family1,2 was a landmark advance for both ubiquitin
biochemistry and auxin physiology. TIR1 is an F-box protein
and forms the substrate binding platform of an ubiquitin E3
ligase complex of the Skp1-Cullin-F-box protein class, hence
SCFTIR1. Previous genetic and pull-down experiments had
suggested that the endogenous auxin indole-3-acetic acid (IAA)
activated either TIR1 or its substrates, the Aux/IAA proteins.3

This activation induced ubiquitination of the Aux/IAA proteins,
which were known to be transcriptional regulators.4 Dharmasiri
et al.1 and Kepinski and Leyser2 showed that the F-box protein
itself was necessary for ligand binding. Shortly afterward the
crystal structure of the receptor−ligand complex was
published,5 giving a detailed crystal structure of the ligand-
binding pocket and the three-component complex that
constitutes the activated receptor. The crystallography data

also showed that the activated TIR1 complex was a new
paradigm for receptor binding because the ligand was shown to
be acting as “molecular glue”, participating in substrate binding
by completing the nascent recognition pocket. More recently
TIR1 and substrate Aux/IAA proteins have been described as
co-receptors because both appear to be necessary for ligand
binding,6 although the crystallography implies that the leading
interaction is the binding of auxin to TIR1.
Auxins have been studied for many decades, and long before

receptor candidates were identified, bioassays were in use to
generate structure−activity relationships (SARs).7,8 From the
early bioassay data sets, a string of chemical hypotheses9,10 and
virtual models11 of the receptor binding site have been
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generated. Auxins have been classified according to chemical
scaffold (phenoxyacetic acid, picolinate, etc.)7 and molecular
interaction fields resembling the virtual model11 and based on
quantum chemical similarity measures defining independent
biologically active chemical spaces.12 At the same time,
academic and commercial groups have continued screening
compound libraries for new synthetic auxins driven by the
growing importance of such analogues in agriculture,
particularly as herbicides, and the growth of chemical
genomics.13−15

Compound screens continue to be based on whole plant
bioassays, and novel active compounds such as DAS534
continue to be discovered.16 Auxin bioassays are, clearly, fit
for the purpose but, given that bioassay output is the sum of
compound uptake, transport, and receptor activation, may not
give activity profiles that reflect selectivity in receptor binding.
The recent description of the TIR1 complex offers, for the first
time, the opportunity of a direct survey of co-receptor structural
selectivity. In Arabidopsis the TIR1 family also contains
orthologues AFB1, AFB2, AFB3, AFB4, and AFB5.17 The
subgroup of AFB4 and AFB5 is the most distinct from the
prototypical TIR1. AFB5 has been shown to be fully functional
as a receptor for auxin and, notably, the site preferred by the
herbicidal auxin Picloram.16,6 In this paper TIR1 and its close
orthologue AFB5 have been used as templates for a mixed,
high-throughput screen for a selection of active auxins and
other auxin analogues in order to build accurate, receptor-
specific structure−activity profiles for each.
Surface plasmon resonance (SPR) has proved a reliable and

very versatile technology for label-free immunological and
pharmacological screening.18,19 The technique requires little
protein, shows interactions in real time, and has robust
evaluation software to allow both detailed kinetic and rapid,
high-throughput binding analyses. In most cases the ligand
(frequently this is the protein receptor) is immobilized on the
chip surface and binding is followed for the analyte (non-
protein small molecule) in solution as it is injected over the
receptor on the chip. The newest generation of SPR
instruments has sensitivity sufficient to record binding of
analytes as small as 100 Da, but previous generation
instruments are less sensitive and are still widely used. In
such cases the assay may sometimes be inverted to immobilize
the small analyte and pass the receptor across the chip,
recording the binding of the larger partner. However, many
small ligands may not be immobilized without losing activity.
For example, the biological activity of auxin IAA (Mr = 172) is
compromised if it is derivatized. The knowledge of the TIR1-
based three-way co-receptor complex offers an additional
binding format, allowing auxin and other small molecules to
be screened as analytes in solution without compromising their
activity.
The utility of structure−activity relationships may be

developed in many ways using chemical and physical properties
of the ligand, often based on side groups, charge distributions,
and conformations. Statistical analysis then allows grouping or
classification of ligands based on quantum molecular similarity
measures. As shown in this report, direct quantitations of co-
receptor assembly coupled with quantum chemical mapping of
a ligand library offers new insights into the molecular properties
of auxins behind their affinity.

■ RESULTS AND DISCUSSION
Measuring Co-receptor Assembly and Dissociation

Using Surface Plasmon Resonance. In order to examine
the assembly requirements of the TIR1 receptor complex a
binding assay was established using SPR. Peptides representing
the degron domain,20 biotinylated at the N-terminus, were used
in place of whole Aux/IAA proteins. Aux/IAA7 (IAA7) was the
default sequence unless specified otherwise (Table 1). Channel

1 of a streptavidin-coated chip was blocked with biocytin,
channels 2 and 4 were loaded with peptide IAA7, and channel 3
was loaded with a mutant version of the same peptide
synthesized with four substitutions around the core degron
motif (IAAm7). Purified TIR1 was passed across all four
channels. In the absence of auxin, little binding was seen
(Figure 1a). Mixing the auxin IAA with TIR1 protein before
injection induced binding of TIR1 to peptide IAA7. There was
little or no binding to the in-chip control, the mutated degron
peptide IAAm7, even in the presence of IAA (Figure 1b).
The amplitude of binding was highest at mildly acidic pH

(pH 6.8), declining by 15% at pH 7.2 and a further 20% up to
pH 8.2 (Supplementary Figure S2). The co-receptor complex
assembles in the nucleus,21 and so subsequent experiments
were carried out at pH 7.4.22

The crystal structure for TIR1 showed that the active, folded
protein held inositol-6-phosphate (IP6) as a cofactor.5 We
tested the requirement for IP6 on the binding of TIR1 to
immobilized peptide by adding IP6 to [TIR1 + IAA] before
injection, using a series of concentrations up to 100 μM (Figure
1c). No significant change in binding or dissociation was
observed, suggesting that the expression and purification steps
produced IP6-competent TIR1, as had been the case for
crystallization work.5 Consequently, IP6 was not routinely
added to the reaction mixes. In contrast, binding of TIR1 was
strongly dependent on the concentration of IAA (Figure 1d),
with half maximal binding data suggesting an affinity of around
5 μM for IAA.
Auxin is unlikely to be removed abruptly in vivo as it is in the

SPR experiments. If IAA is retained in the wash buffer after the
association phase (but TIR1 is no longer being injected),
dissociation of the complex is markedly slowed (Figure 1e).
Dissociation off-rate constants assuming first-order 1:1
Langmuir binding are calculated as kd with IAA = 1.09 ×
10−3 s−1, and kd without IAA = 5.58 × 10−3 s−1 (X2 = 1.07).

Establishing Preferences for IAA/Aux Co-receptors.
There are 29 members of the Aux/IAA family of transcriptional
regulators in Arabidopsis.23 Variation within the degron is
somewhat lower, but there remains a diversity of degron
sequences. A set peptides was selected to represent major
degron clades, IAA7 (identical to IAA14), IAA9 (identical to
IAA3 and IAA4), IAA28 and IAA31 (Table 1).
There is high selectivity for degron sequence and little

qualitative difference in selectivity between TIR1 and AFB5

Table 1. Degron Peptide Sequences; Residues varying from
IAA7 are Underscored

peptide sequence

IAA7 biot-AKAQVVGWPPVRNYRKN
IAAm7 biot-AKAQVVEWSSGRNYRKN
IAA9 biot-AKAQIVGWPPVRNYRKN
IAA28 biot-EVAPVVGWPPVRSSRRN
IAA31 biot-QREARQDWPPIKSRLRD
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(Figure 2). Residue substitutions affected the amplitude of
binding, although this was position-dependent (Table 1 and
Figure 2). The conservative substitution between IAA7 and
IAA9 [V/I] three residues upstream from the core degron
motif WPPVRN (Table 1) did not affect binding kinetics
(Figure 2a and b). Changes both C-terminal and N-terminal to

this core (IAA28) reduced binding appreciably, with similar
effects in both TIR1 and AFB5. The very different IAA31
showed little auxin-dependent binding.
The kinetic off-rates were calculated in each case. For TIR1

and IAA7, 9, and 31 they all fall within the range of 3.3−4.1 ×
10−3 s−1. They are marginally higher for IAA17 and 28 at 5.0

Figure 1. The co-receptor complex is specific for auxin. (a) Sensorgram showing the binding of TIR1 to degron peptide IAA7 on the chip in the
absence (blue) and presence of IAA (500 μM; gray). (b) As in panel a, but showing the absence of binding even to a mutagenized IAA7 peptide
(IAAm7). (c) The assembly of the TIR1 co-receptor complex is not dependent on exogenous IP6. (d) The response to auxin is dose-dependent.
Sensorgrams in panels c and d show ΔRU using channels 4-3 (binding to peptide IAA7 minus peptide IAAm7). (e) The co-receptor complex
remains stable in the presence of IAA. The dissociation of the complex is markedly reduced with IAA in the wash buffer (dark blue) compared to
dissociation without auxin in the wash buffer (mid and light blue, repeats). Calculated kd with IAA = 1.09 × 10−3 s−1; kd without IAA = 5.58 × 10−3

s−1; X2 = 1.07.

Figure 2. TIR1 (a) and AFB5 (b) co-receptor assembly is dependent on degron sequence. In each case TIR1 or AFB5 protein was mixed prior to
injection with IAA at 50 μM, except for the control (no auxin). (a) Calculated kd’s for TIR1: IAA7 kd = 3.3 × 10−3 s−1; IAA7 repeat kd = 4.1 × 10−3

s−1; IAA9 kd = 3.5 × 10−3 s−1; IAA28 kd = 5.8 × 10−3 s−1; IAA31 kd = 3.6 × 10−3 s−1. X2 for the set = 1.24. (b) AFB5 dissociation rates are more rapid
than for TIR1: IAA7 kd = 0.019 s−1; IAA7 repeat kd = 0.019 s−1; IAA9 kd = 0.020 s−1; IAA28 kd = 0.011 s−1; IAA31 kd = 0.002 s−1. X2 for the set =
0.70. Assays were set up with channel 1 blocked with biocytin, channel 2 coated with IAA7, and two other peptides on channels 3 and 4. Channel
surfaces were saturated with biotinylated peptide in all cases. The IAA7 signal was available to normalize responses between chips, although within
batches of protein this was not found necessary. The binding assays were done using a series of auxins. Only data collected at 50 μM IAA are shown,
plus one of the series of control injections without auxin.
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and 5.8 × 10−3 s−1, respectively (Figure 2). With AFB5 the
order and relative amplitudes of binding were similar to the
pattern for TIR1, but all dissociation rates from AFB5 were
much more rapid.6 Rates for IAA7, 9, and 28 were between 1.1
and 1.9 × 10−2 s−1, and no binding was measured for IAA 31.
The co-receptor binding preferences reflect phenotypes

shown in mutant plant lines and in the measured half-lives of
the mutant Aux/IAA proteins.23−25 The Arabidopsis lines axr2
(IAA7), axr3 (IAA17), shy2 (IAA3, sharing the same degron
sequence as IAA9), and iaa28 (IAA28) are all gain-of-function
mutations with altered degron sequences. Their phenotypes are
all consistent with the consequences of disruption in TIR1
binding, inefficient ubiquitination, a longer half-life, and
accumulation of these transcriptional repressors.23 The Aux/

IAA family member with most distinct degron motif, IAA31, is
long-lived23 and shows very poor binding to TIR1 or AFB5.

Establishing Selectivity for Ligand. A range of synthetic
auxins were tested in IAA7 peptide-based assays with TIR1 as
described above (Figure 3). In each experiment 500 μM IAA
was included to saturate binding (Rmax) as a comparator, and all
other auxins and compounds were added at 50 μM. Most
compounds known to be active auxins did induce binding,
although with somewhat differing association and dissociation
characteristics. Allowing for the more accelerated dissociation
rates from AFB5 (Figure 3b), most of the compounds tested
showed the same pattern of binding and dissociation from
AFB5 as for TIR1 (Figure 3a). The herbicide Picloram is a
known exception and has a higher affinity for AFB5 than for
TIR1.6 Some auxins support assembly of the co-receptor

Figure 3. Co-receptor assembly kinetics vary with ligand. A series of commercially relevant synthetic auxins was compared to the IAA response for
TIR1 (a) and AFB5 (b). (a) Calculated kd’s for TIR1: IAA500 kd = 0.73 × 10−3 s−1; IAA50 kd = 1.1 × 10−3 s−1; Fluroxypyr kd = 0.93 × 10−3 s−1;
Triclopyr kd = 3.4 × 10−3 s−1; IBA kd = 6.9 × 10−3 s−1. X2 for the set = 0.31. (b) Calculated kd’s for AFB5: IAA500 kd = 1.8 × 10−2 s−1; IAA50 kd = 3.0
× 10−2 s−1; Fluroxypyr kd = 3.3 × 10−2 s−1; Triclopyr kd = 8.1 × 10−2 s−1; IBA no binding. X2 for the set = 1.81. In all cases a control with no added
auxin was included (red).

Figure 4. Screening analogue libraries for co-receptor ligand specificity. Assembly of the co-receptor varies with ligand and with F-box partner. Each
compound was assayed at 100 μM, and the data are presented normalized to 100 μM IAA, which was run at the start and end of each set of
experiments. The report point was taken 10 s before the end of the association phase, and the data are for binding to peptide IAA7 with mIAA7 as
reference.
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complex but demonstrate far more rapid dissociation kinetics
than recorded for IAA. An example is seen by comparing the
herbicidal auxins Fluroxypyr and Triclopyr (Figure 3). Both
bind as actively as IAA to both TIR1 and AFB5, and Fluroxypyr
has a similar off-rate (TIR1: kd,IAA = 1.1 × 10−3 s−1, kd,Flu = 0.93
× 10−3 s−1; AFB5: kd,IAA = 3.0 × 10−2 s−1; kd,Flu =3.3 × 10−2

s−1). However, with both receptors Triclopyr off rates are
approximately 3-fold faster (TIR1: kd,Tri = 3.4 × 10−3 s−1;
AFB5: kd,Tri = 8.1 × 10−2 s−1).
Domain 1 of Aux/IAA proteins has been shown to

contribute toward co-receptor selection.6 Nevertheless, the
peptide-based SPR assay appeared to reflect physiological auxin
activity well, in addition to providing kinetic details unavailable
from radiolabel binding assays6 and pull-down assays.17 It
follows that the defined co-receptor assays may be useful for
developing a new, more instructive auxin quantitative
structure−activity model.
Establishing a Compound Screen. On the basis of results

with the training compounds described above, the SPR assay
was modified to set up ligand screens for both TIR1 and AFB5.
Association times were 180 s, and dissociation times were
300 s. In order to facilitate comparisons between compounds
and runs, data have been normalized to the response for
100 μM IAA recorded at the beginning, middle, and end of
each data set. All compounds were tested at 100 μM, and report
points were introduced19 before injection, 10 s before the end
of association, 60 s after dissociation started, and at the end of
the dissociation phase. Figure 4 shows the binding data for 58
compounds normalized using the report point at the end of the
association phase. The full list of compounds and resonance
unit (RU) values are given in Supplementary Table S1.
Binding Efficiency. All previous classifications of auxins

have been based on data collected from growth bioassays.10−12

Early work classified auxins by chemical structure.26,10 Later,
molecular interaction energy fields correlated with biological
activity were used to group 53 compounds into 4 classes.11

Most recently, a suite of analyses defined 11 quantum chemical
classes associated with five levels of biological function using
241 compounds.12 Further calculations of electron density

using a molecular harness coupled with similarity indices
offered additional theoretical and experimental insights.27 The
earlier work assumed activity was associated with activation of a
single receptor. The more recent works have accepted that
there may be multiple components to molecular efficacy,
including uptake, efflux, and catabolism as well as receptor
activation. The most recent work also accepted that the system
needed to account for more than one family of receptors.12,27

The present structure−activity analysis of auxin-like mole-
cules is based directly on experimental binding data for co-
receptor assembly (Figure 4). By projecting quantum chemical
similarities onto orthogonal (independent) factors, it was
possible to uncover parameters of both binding Efficiency and
Specificity (Figure 5) to open new perspectives on the
molecular properties of auxins. By measuring TIR1 and AFB5
binding in isolation, it was possible to refine the observation
that the coulomb matrix (electrostatic interaction surface) plays
the major role in specifying auxins.12 The present analysis
suggests that binding Efficiency is associated with the overlap
matrixes (volumes of the components in the molecular system),
whereas receptor Selectivity includes further variables of the
coulomb matrixes (electrostatic surfaces). It infers that the
recognition and activation reactions of auxins are driven by
different reaction mechanisms.
Initially molecules were organized in order of increasing

binding (binding average in Figure 5). The first result is offered
by a factorial analysis of the binding activities with each
compound for both TIR1 and AFB5. The analysis offered two
uncorrelated factors (Figure 5): the first factor explains 87.29%
of the variance and correlated with the average of the binding
activity of both TIR1 and AFB5 with r = −1.0 (Factor 1 =
Efficiency). The analysis inferred that binding is dominated by a
common molecular recognition mechanism. The second
component (12.71% of variance) did not correlate with the
average of the binding activities (r = −0.08) but did correlate
with the differences in binding between TIR1 and AFB5 (r =
0.86). This suggested that structural details on the ligand are
driving the small differences in binding specificity toward either

Figure 5. Structure and functional characterization of auxin-like molecules toward their binding with TIR1 and AFB5. (a) Ligand screening data for
binding at both receptors (N is the compound reference number in Supplementary Table S2). The black data points are the log values of the mean
of the binding per compound for both TIR1 and AFB5 (binding average). The red line represents the first orthogonal factor that is associated with
general binding Efficiency of each compound (87.29% of variance). The blue line is the second orthogonal factor, which we associate with binding
Specificity (12.71% of variance). Compounds are divided by the analysis into five groups of binding Efficiency along the curve. (b) Quantum
chemical classification to predict the membership of the ligands based on their binding Efficiency (E1−E5) and (c) binding specificity, which
distinguishes the chemical nature of the binding to TIR1 and AFB5. The statistical membership of both Efficiency and Specificity using quantum
chemical variables was predicted with 100% of efficiency. The density of molecules predicted per group is projected on the first lineal discriminant
equation for both cases.
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TIR1 or AFB5 and that these details may be uncovered by the
second factor (Factor 2 = Specificity).
Factor 1 was further analyzed using the equation ((xi − yi)

2/
(xi + yi)

2) categorizing binding Efficiency into five levels (1−5
shown in Supplementary Table S2). Essentially, groups 1−3 are
populated by compounds that are inactive in the SPR co-
receptor assembly assay or are poor ligands, group 4
compounds are weak ligands, and group 5 compounds are
active or highly active against either TIR1 or AFB5 or both.
Four discriminant equations predict correctly 100.00%

(Figure 5b) of the changes of binding activity based on an
orthogonal arrangement of the overlap and coulomb similarity
and self-similarity matrixes. The six maximum-likelihood
estimators of binding Efficiency are changes in the overlap
matrixes. The overlap self-similarity diagonal of the molecules
{Zii(J)}tot is one of these six predictors. This powerful predictor
contains electronic structure information, inferring that the
fundamental chemical nature of binding Efficiency is related to
the volume component of the electronic system.28 The
remaining major predictor variables are provided by one
component of the total matrix and four components that are a
consequence of NH2, fluorine, or chlorine substitutions.
The physicochemical properties that confer specific activity

to the natural auxin IAA (labeled as “a” in the scatter plot,
Figure 6) can be seen to be mimicked by modifying the
structure (in terms of the inter-relationship of a set of basis
vectors of a quantum system) of other unsaturated ring systems
using an appropriate balance of substitutions using halogens
such as F or Cl or an amino group. Halogens may affect the
reactivity of the aromatic rings by deactivation, which
simultaneously directs electrophilic attack to ortho/para/meta
positions. The amino group may activate the electronic
structure of aromatic rings according to the classical mesomeric

and inductive electronic processes, as well as acting as both a
proton donor and acceptor.
Ring-substituted halogens and N atoms deform the

electronic structure of the atomic neighborhood, provoking
differences in quadrupole moments and potential energy
surfaces of the molecule (Figure 7). The herbicide Fluroxypyr,
for example, illustrates the influence of a lone pair on the
picolinic ring -N-, which in this case is attracted by the nearby F
atom to form a negative potential. The two chlorines are
withdrawing electrons from the ring and are connected with the
NH2 group to form important quadrupole moments (Figure 7).
Quinclorac is another example of an active auxin exhibiting a
depletion of ring electron density due to a Cl and a lone pair on
the N atom (Figure 7). Interestingly, in this case these atoms
are increasing significantly the number of electrons of the
system and orienting the π-system. Our analysis infers that
halogen substitutions contribute the major direct influence on
the electron structure, but further analysis has to be done to
explain the details of each specific substitution on auxin-binding
interactions.
Unfortunately few commercial auxins have been included in

published data sets, and so comparisons to previous
classification systems are limited. However, our receptor
binding Efficiency ranking agrees well with previous systems,
including those based only on biological activity (Supple-
mentary Table S2) and the recent compilation linking tolerance
to, e.g., 2,4-D and 2,4,5-T with receptor selectivity,29 adding
mechanistic detail.

Co-receptor Selectivity. Picolinates display a higher than
average binding activity for AFB5 than IAA along with
Quinclorac (Figures 4−7). An important part of the work
was to clarify the differences in structural selectivity of the co-
receptor complexes TIR1 and AFB5. For this we analyzed the

Figure 6. Scatter plot of the binding profiles of the ligands with both TIR1 and AFB5 proteins taking Efficiency and Specificity as independent
factors. This classification is inferred from the structural comparison of the ligand molecules by evaluation of the lineal discriminant equations.
Compounds are plotted as “Label” according to Supplementary Table S2. Note, Efficiency class 1 does not bind, and hence there are no entries for
these compounds.
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second factor and found that the differences of the binding
between receptors were defined by a categorical variable
independent of Efficiency. Analysis of the electronic structure
of the molecules explained 100.00% of the membership in three
levels according to the coefficients (Figure 5c; Specificity).
Coefficients close to zero were classified as unspecific (the gray
region), high negative coefficients as TIR1-specific (cyan), and
high positive as AFB5-specific (blue). The categories are
statistically consistent as dependent variables and may help
uncover structural features (independent variables) contribu-
ting to selective binding activities between auxin molecules and
the co-receptors. The independent variables are based on
chemometrics analyses of quantum chemical similarity (Zij(Ω))
and self-similarity (own molecular index: Zij(Ω)) indices.12 The
solutions were found by using linear discriminant analysis
(LDA).
Specificity or unspecificity may not be defined by any one

specific atom or position and is influenced by coulomb
matrixes, suggesting also that it is driven by electrostatic forces.
From the analysis of quantum chemical descriptors, the
following are the main factors defining Specificity: (1) double
effect of an NH2 group, two orthogonal factors depending on
the atomic neighborhood, (2) reduction by iodine of the
binding specificity of the molecules, possibly by increasing the
van der Waals volumes, (3) electrostatic effects (Coulomb
matrix) of fluorine atoms and heterocyclic ring-N substitutions,
and (4) the total Coulomb matrix of dissimilarities.

The preference by AFB5 for Picloram, Fluoxypyr, DAS 534,
and Quinclorac among others is explained by the Specificity
functions. Representative molecules for each of the groupings
are shown as quadrupole moment electron densities (Figure 7,
right part of each molecule). The upper panel gives class size
and illustrates the independence of Specificity factor from
Efficiency factor. Global and local 3D electronic structures
(Figure 7) show the lone pairs in the nitrogen atom of
Quinclorac as well as the corresponding negative potential,
most notably for Quinclorac. The quadrupole moment of the
electron density represents the deviation of the electron
distribution from its ideal, undisturbed spherical cloud around
each atom. This will coordinate different multipole−multipole
interactions during mutual orientation within the binding
pocket of TIR1/AFB5. Further differences of the quadrupole
structure will contribute to specific local van der Waals
interactions in the binding pocket and with the Aux/IAA
degron (compare weak (Low Efficiency) and strong (High
Efficiency) ligands in Figure 7).
The analysis suggests overall that electrostatic interactions

are dominating the recognition of molecules with greater
affinity to AFB5. In comparison, the molecules with greater
affinity toward TIR1 present additional negative potential on
the aromatic ring structure.

Picolinate Auxins and AFB5. The picolinate and
quinolinate auxins provide valuable commercial auxins. Most
of the picolinates supported very strong binding to both TIR1

Figure 7. Discrimination of auxin-like molecules. Functional dependences were analyzed between the quantum chemical variables of each ligand and
binding with TIR1 and AFB5. Box plots show statistical analyses of molecular groupings (Figure 6), relating the feedback between molecular
structure and binding Efficiency (log Factor 1 abbreviated to Fac1) and binding Specificity (Fac2). Compounds are organized at two levels of
efficiency, low (E3) and high (E5) determined by Fac1, and two levels of specificity, TIR1 and AFB5 (Fac2). Quantum solutions for representative
molecules are illustrated. At the right of each panel the blue color represents negative potential at −0.025 atomic units [au], and red the quadrupole
moment (0.001 au). These areas are highly likely to contribute hydrogen bond and van der Waals interactions, respectively. The skeletal molecular
structure at the left of each panel represents the deformation of the electron density forming intramolecular covalent bonds. The red areas are the
positive deformation of the electron density (−0.01 au) or covalent bonds, while the gray areas are the negative deformation (−0.02 au) of the
electron density or donor areas. The analysis indicates lone pair electrons on Fluroxypyr and Quinclorac molecules, indicating regions that play a
determining role in intermolecular forces.
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and AFB5, although in general the interactions were stronger
with AFB5 than with TIR1 (Figure 4). This is consistent with
previous observations identifying AFB5 as the primary target
for Picloram.16,6 Fluroxypyr also supported stronger AFB5 co-
receptor assembly compared with that of IAA. Of all the
compounds tested, DAS534 has the largest van der Waals
surface area and was also the strongest by SPR assay with far
stronger binding to AFB5 than IAA. Interestingly, DAS534 was
found to be among the most active auxins in bioassays.16

The chemometric statistical analysis infers differences of
binding activity for sets of compounds against TIR1 and AFB5.
However, this inference is based on just 12.64% of the binding
information and, so far, a relatively small collection of
compounds. Therefore it is noted that it is not possible to
define two populations of molecules fitting differentially on
these receptors with statistical confidence. Nevertheless, taking
into account previous genetic and biochemical evidence,16,6 it is
clear that AFB5 is the dominant target for agricultural
picolinate auxins and the chemometrics define the factors
conferring high Efficiency and high Specificity.
The discovery of a set of compounds with selectivity for

AFB5 also raises a question about why this distinction might
have developed. The data on selectivity for co-receptor degrons
shows no difference between TIR1 and AFB5 (Figure 2), and
so the reason for the distinction is likely to lie with ligand
binding on TIR1 and AFB5, not co-receptor partnerships. The
principle endogenous auxin is IAA, with evidence only of IBA,
4-chloroIAA, and phenylacetic acid as additional active auxins
occurring naturally. Of these, no preference was shown for
AFB5 (4-chloroIAA was not tested), and chemometrics
classifies IBA with no preference, phenylacetic acid with
TIR1. Therefore, while IAA does bind strongly to AFB5,
selection for more than a single binding geometry suggests that
there might be additional endogenous ligands still to be
described. So far it is not possible to predict what such
additional native ligands might be, and larger chemical libraries
will need to be screened to improve statistical definitions.
Antiauxins and Nonbinders. Extensions and elaborations

of the indolic side chain have been shown to make effective
antiauxins acting as competitive inhibitors.30,31 It remains
possible that some of the compounds tested for binding do
indeed bind to TIR1/AFB5 but then prevent approach of the
Aux/IAA degron and hence block co-receptor assembly. Such
antiauxins would give no binding Efficiency in the SPR assay.
However, such compounds could record activity in some whole
plant bioassays because effective blockade of these receptors
would lead to longevity of the Aux/IAA substrates and auxin
hyperactivity in the same manner as has been noted for
mutations to certain Aux/IAA degrons.24 It is also noted that
the naturally occurring IBA supported only minimal binding
(Figure 4; Supplementary Tables S1 and S2). It has been
reported that IBA may be catabolized to IAA in vivo to become
active.32 The data presented (Figure 4) support the hypothesis
that IBA is minimally active per se, but it remains to be seen
whether this compound has activity in vivo as an antagonist.
To date, the complete co-receptor complex has been found

necessary in all binding assay formats.6 Binding to TIR1/AFB5
alone has not yet been recorded, although this must precede
co-receptor assembly given that the binding pocket is
completely occluded by degron association.5 Until such an
assay is devised, it will be necessary to address the distinctions
between antiauxins and nonbinders by developing an antiauxin
assay by competition.

A few compounds in addition to IBA that are known to be
active as auxins in whole plant bioassays showed poor binding
in the SPR assay. For example, the benzoate Amiben (also
known as Chloramben, 3-amino-2,5-dichlorobenzoic acid), a
commercial herbicide, gave little or no binding to either
receptor. By quantum chemometrics Amiben is placed in the
group of compounds with unspecified target site. We recognize
that we have selected the two most extreme receptor proteins
for this study and that some selectivity may lie with AFB1−4. If
one of these other AFBs proves to be the preferred target for,
e.g., benzoate auxins, further routes will open for the
development of site-selective compounds and crop resistance
to such compounds.

Concluding Comments and Binding Site Models. Co-
receptor binding data and chemometric analyses have yielded
two independent factors related to auxin activity. The first,
which we have labeled Efficiency, defines whether a compound
will bind. Five categories of compounds were identified
(Efficiency 1−5; Supplementary Table S2). Then, using the
compounds that bind well (levels 4 and 5), a second factor was
found defining binding Specificity. The data suggest that
Efficiency is associated with the overlap matrix (volumes of the
components in the molecular system). Specificity is defined by
coulomb matrixes, suggesting that it is driven by electrostatic
surfaces on the ligand. Larger van der Waals surfaces dominate
the recognition of molecules with greater affinity to AFB5 such
as the picolinates. Molecules with greater affinity toward TIR1
present additional negative potential on the aromatic ring.
Our results may be compared to previous binding interaction

models and SARs. Specific descriptive definitions of auxins have
been known to be inadequate for many years (reviewed in
195326), and the focus has been on functional descrip-
tors.26,10,11,8 A molecular interaction energy field model in
combination with similarity indices and bioassay data created a
useful classification system11 that included antiauxins. Interest-
ingly, this system classed IBA and triiodobenzoic acid (TIBA;
no binding, Figure 4) as antiauxins. 2-NAA was moved from an
initial classification as an antiauxin to a weak auxin, and this
agrees with our data (Figure 4). Indeed, there is general
agreement between the classifications assigned by Tomic et
al.11 and the SPR data generated here. Their analysis also led to
a global surface energy model for bound auxin, although this
predates information about the TIR1/AFB receptor family and
is unable to differentiate selective binding functions.
The popular sterically and spatially constrained aromatic

platform binding model of Katekar10 is only partially supported,
in that halogen substitutions increase the number of electrons
but deactivate the aromaticity of the ring system. Again, this
model predates knowledge of receptor proteins. There are
interesting parallels between our findings and the conforma-
tional change binding site model.9 Our analysis suggests
Efficiency factors drive ligand approach. Specificity factors are
independent of Efficiency but will contribute to docking.
Kaethner’s model9 allowed the approach of molecules in the
“recognition conformation”. Only those with carboxylate side
groups able to couple change to the “modulation conforma-
tion” with receptor movement are active. We can associate part
of Kaethner’s receptor movement to co-receptor assembly,1,2

and the crystal structure of TIR1 showed that IAA is bound in
the modulation conformation,5 equivalent to Tilted.11 There
are no formalistic links between our Efficiency and Specificity
functions and the two phases of binding implied by the
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Kaethner model, but all indicators point toward more than a
single stage binding process.
The definition of auxin activity to which our data matches

most closely is that of Veldstra,26 who recognized that the
nonpolar ring system needed a high interface activity and the
carboxy group (polar part) needed to be in a very definite and
peripheral spatial position when bound. To his verbal definition
we can now add some chemometrics based on quantum
chemical calculations and similarity and self-similarity indices,
and we have started to specify important distinctions in ligand
preferences between TIR1/AFB family members.

■ METHODS
Materials. All chemicals were of the highest purity available. All

auxins and test compounds were dissolved to give 10 mM stock
solutions in 50% ethanol or 100 mM in DMSO. Generally the final
concentration of solvent was 0.1% or lower and never higher than
0.5%.
Baculovirus Expression and Protein Purification. Expression

constructs for both TIR1 and AFB5 were engineered to give fusion
proteins His-MBP-FLAG-TIR1 and GST-AFB5. These were cloned
into baculovirus vectors that included His-ASK1 to give dual
expression (Supplementary Figure S1). Generation of recombinant
virus, selection, expression screening, and generation of high-titer viral
stock was done by Oxford Expression Systems (Oxford, U.K.).
Trichoplusia ni (T. ni High Five) was used throughout as the host cell
line. Protein was harvested approx 92 h after infection.
Cells were harvested by centrifugation followed by lysis in Cytobust

(Invitrogen) according to the manufacturer’s instructions. A protease
inhibitor cocktail (Roche) and MG132 (final 10 μg mL−1, Sigma
Aldrich) were included. Cells from 30 mL were lysed (600 μL
Cytobust) and clarified by centrifugation. TIR1 lysate was loaded onto
anti-FLAG Sepharose. After washing with Biacore buffer HBSEP (10
mM Hepes, 150 mM NaCl, 3 mM EDTA, pH 7.4, 0.005% P20), TIR1
was eluted with FLAG peptide. For AFB5, the lysate was loaded onto
an FPLC Superose 12 (30 × 10) column equilibrated in HBSEP.
Fractions were screened for activity using the Biacore assay.
Peptides and Compounds. Peptides were synthesized with

biotin at the N-terminus to give biot-AKAQVVGWPPVRNYRKN.
Key residues in this degron sequence are -GWPPVR-, and as an
internal control we used a mutated version of this sequence, biot-
AKAQVVEWSSGRNYRKN (IAAm7). Peptides (Thermo Fisher
Scientific) were greater than 80% purity, although data sheets
generally showed greater than 90% primary product. Peptide stocks
(1 mg mL‑1) were in deionized water and stored at −20 °C.
SPR. Biotinylated peptides (5 μg mL−1 in HBS EP buffer + 0.01%

P20) were passed over streptavidin-coated chips (SA chips, GE
Healthcare) to give, typically, around 700RU on the surface. In most
cases, channel 1 was blocked with biocytin, channel 2 and channel 4
were coated with active Aux/IAA7 peptide, and channel 3 was coated
with IAAm7. Both 2−1 and 4−3 data sets were recorded, although in
practice little or no difference was found using either biocytin or
IAAm7 as control channel. Sensorgrams were run in HBSEP + 0.01%
P20 at 20 °C using a flow rate of 25 μL min−1. Purified TIR1 was
mixed with appropriate auxin and incubated in the sample chamber
before injection. Regeneration of the chip was with 50 mM NaOH,
using injections of 30 s. Regeneration generally returned the
sensorgram trace to zero, there was minimal baseline drift within
experiments, and the chip could be used repeatedly over many weeks
with little deterioration.
In general, association times were 180 s, and dissociation times were

600 s. Reference injections of receptor plus 500 μM IAA as well as
receptor in the absence of auxin were included in each run at both start
and end of a series, often with a further control midway. In bulk
screening experiments all compounds were tested initially at 100 μM,
association times were 60 s, and dissociation in buffer was 180 s,
followed by regeneration.

Structure−Binding Relationship Analysis. Considering the
molecules as functional units, we calculated the mean of binding
activity per molecule for both TIR1 and AFB5 (BAmol = (BAmol

TIRI +
BAmol

AFB5)/2). This allowed ordering of the molecules by increasing
binding activity. A variance decomposition by factorial analysis
quantified the different responses of both receptors to the population
of molecules, and the equation ((xi − yi)

2/(xi + yi)
2) of the activity per

receptor with respect to BAmol offers the points of the curve with
change of activity.

The factorial analysis separates common and specific binding of
both receptors. Variations of the curve resemble the changes of
binding behaviors of the molecules. From this framework it was
possible to focus on the ligand molecules using discriminant analysis,
considering the curve of the common binding affinity values and the
binomial function of binding specificity per receptor. Both functions
are orthogonal.

The chemical structures of all compounds were optimized by
quantum chemical calculations using the hybrid functional KMLYP,
which gives accurate representations of geometry and electronic
structure.33 The optimized geometries served as input for the
calculations of the overlap (δ) and coulomb (J) matrixes of quantum
chemical similarity measures (QMSM)12 and Hardness.27,33

Quantum chemical similarities of parent molecules were extended
using the corresponding matrixes after substitutions of halogen atoms
for hydrogen and nitrogen for carbon giving matrixes capturing the
influence of halogens (three kind of matrixes for halogens Hal = F, Cl,
and I) and N (for both N = Nring, NFunctional. Group) on the electronic
structure of each molecule. The corresponding matrixes were
factorized by principal component analysis in order to eliminate
repetitive information. The following vectors of molecular quantum
self-similarities and matrices of quantum chemical similarities in
column-reduced form (k) are used in this work:

δ δ δZ J Z Z J Z Z J Z{ ( )} { ( )} { ( )} { ( )} { ( )} { ( )}ii ii ii ii ii iitot tot hal hal N N

δ δ δZ J Z Z J Z Z J Z{ ( )} { ( )} { ( )} { ( )} { ( )} { ( )}ik ik ik ik ik iktot tot hal hal N N

The similarity matrixes and self-similarity vectors were used as
inputs for molecular information matrices to find the changes of
electronic structure corresponding to binding mismatches between
TIR1 and AFB5 (where they occurred) as well as the general
competivity of binding processes using discriminant analysis34 and
other statistical confirmatory techniques.35
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