1,684 research outputs found

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer

    Get PDF
    Intracellular levels of zinc have shown a strong inverse correlation to growth and malignancy of prostate cancer. To date, studies of zinc supplementation in prostate cancer have been equivocal and have not accounted for bioavailability of zinc. Therefore, we hypothesized that direct intra-tumoral injection of zinc could impact prostate cancer growth. In this study, we evaluated the cytotoxic properties of the pH neutral salt zinc acetate on the prostate cancer cell lines PC3, DU145 and LNCaP. Zinc acetate killed prostate cancer cell lines in vitro, independent of androgen sensitivity, in a dose-dependent manner in a range between 200 and 600 μM. Cell death occurred rapidly with 50% cell death by six hours and maximal cell death by 18 hours. We next established a xenograft model of prostate cancer and tested an experimental treatment protocol of direct intra-tumoral injection of zinc acetate. We found that zinc treatments halted the growth of the prostate cancer tumors and substantially extended the survival of the animals, whilst causing no detectable cytoxicity to other tissues. Thus, our studies form a solid proof-of-concept that direct intra-tumoral injection of zinc acetate could be a safe and effective treatment strategy for prostate cancer

    Analysis of cancer metabolism with high-throughput technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in genomics and proteomics have allowed us to study the nuances of the Warburg effect – a long-standing puzzle in cancer energy metabolism – at an unprecedented level of detail. While modern next-generation sequencing technologies are extremely powerful, the lack of appropriate data analysis tools makes this study difficult. To meet this challenge, we developed a novel application for comparative analysis of gene expression and visualization of RNA-Seq data.</p> <p>Results</p> <p>We analyzed two biological samples (normal human brain tissue and human cancer cell lines) with high-energy, metabolic requirements. We calculated digital topology and the copy number of every expressed transcript. We observed subtle but remarkable qualitative and quantitative differences between the citric acid (TCA) cycle and glycolysis pathways. We found that in the first three steps of the TCA cycle, digital expression of aconitase 2 (<it>ACO2</it>) in the brain exceeded both citrate synthase (<it>CS</it>) and isocitrate dehydrogenase 2 (<it>IDH2</it>), while in cancer cells this trend was quite the opposite. In the glycolysis pathway, all genes showed higher expression levels in cancer cell lines; and most notably, digital gene expression of glyceraldehyde-3-phosphate dehydrogenase (<it>GAPDH</it>) and enolase (<it>ENO</it>) were considerably increased when compared to the brain sample.</p> <p>Conclusions</p> <p>The variations we observed should affect the rates and quantities of ATP production. We expect that the developed tool will provide insights into the subtleties related to the causality between the Warburg effect and neoplastic transformation. Even though we focused on well-known and extensively studied metabolic pathways, the data analysis and visualization pipeline that we developed is particularly valuable as it is global and pathway-independent.</p

    Central pancreatectomy without anastomosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central pancreatectomy has a unique application for lesions in the neck of the pancreas. It preserves the distal pancreas and its endocrine functions. It also preserves the spleen.</p> <p>Methods</p> <p>This is a retrospective review of 10 patients who underwent central pancreatectomy without pancreatico-enteric anastomosis between October 2005 and May 2009. The surgical indications, operative outcomes, and pathologic findings were analyzed.</p> <p>Results</p> <p>All 10 lesions were in the neck of the pancreas and included: 2 branch intraductal papillary mucinous neoplasms (IPMNs), a mucinous cyst, a lymphoid cyst, 5 neuroendocrine tumors, and a clear cell adenoma.</p> <p>Conclusion</p> <p>Central pancreatectomy without pancreatico-enteric anastomosis for lesions in the neck and proximal pancreas is a safe and effective procedure. Morbidity is low because there is no anastomosis. Long term endocrine and exocrine function has been maintained.</p

    Following Mitochondrial Footprints through a Long Mucosal Path to Lung Cancer

    Get PDF
    BACKGROUND:Mitochondrial DNA (mtDNA) mutations are reported in different tumors. However, there is no information on the temporal development of the mtDNA mutations/content alteration and their extent in normal and abnormal mucosa continuously exposed to tobacco smoke in lung cancer patients. METHODOLOGY:We examined the pattern of mtDNA alteration (mtDNA mutation and content index) in 25 airway mucosal biopsies, corresponding tumors and normal lymph nodes obtained from three patients with primary lung cancers. In addition, we examined the pattern of mtDNA mutation in corresponding tumors and normal lymph nodes obtained from eight other patients with primary lung cancers. The entire 16.5 kb mitochondrial genome was sequenced on Affymetrix Mitochip v2.0 sequencing platform in every sample. To examine mtDNA content index, we performed real-time PCR analysis. PRINCIPAL FINDINGS:The airway mucosal biopsies obtained from three lung cancer patients were histopathologically negative but exhibited multiple clonal mtDNA mutations detectable in the corresponding tumors. One of the patients was operated twice for the removal of tumor from the right upper and left lower lobe respectively within a span of two years. Both of these tumors exhibited twenty identical mtDNA mutations. MtDNA content increased significantly (P<0.001) in the lung cancer and all the histologically negative mucosal biopsies except one compared to the control lymph node. CONCLUSIONS/SIGNIFICANCE:Our results document the extent of massive clonal patches that develop in lifetime smokers and ultimately give rise to clinically significant cancers. These observations shed light on the extent of disease in the airway of smokers traceable through mtDNA mutation. MtDNA mutation could be a reliable tool for molecular assessment of respiratory epithelium exposed to continuous smoke as well as disease detection and monitoring. Functional analysis of the pathogenic mtDNA mutations may be useful to understand their role in lung tumorigenesis

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa

    Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)

    Get PDF
    Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23 (syst) improving the statistical uncertainty by more than a factor of two. We find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs -> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
    corecore