180 research outputs found
Trends in the incidence of adenocarcinoma of the oesophagus and cardia in the Netherlands 1989–2003
Over the 15-year period 1989–2003, the incidence of oesophagus–cardia adenocarcinoma in the Netherlands rose annually by 2.6% for males and 1.2% for females. This was the net outcome of annual increases in the incidence of adenocarcinoma of the oesophagus (ACO) of 7.2% for males and 3.5% for females and annual declines in the incidence of adenocarcinoma of the gastric cardia (AGC) of more than 1% for both genders. Nonlinear cohort patterns were found in females with ACO and for both genders in AGC; a nonlinear period pattern was observed only in males with AGC. These differing epidemiological patterns for ACO and AGC do not support a common aetiology. Proposed underlying factors for the rise in ACO incidence appear to have little effect on AGC incidence. This and the secular decline in smoking among males may have led to the decline in AGC incidence
Classification of the nucleolytic ribozymes based upon catalytic mechanism
The nucleolytic ribozymes carry out site-specific RNA cleavage reactions by nucleophilic attack of the 2’-oxygen atom on the adjacent phosphorus with an acceleration of a million-fold or greater. A major part of this arises from concerted general acid-base catalysis. Recent identification of new ribozymes has expanded the group to a total of nine and this provides a new opportunity to identify sub-groupings according to the nature of the general base and acid. These include nucleobases, hydrated metal ions, and 2’-hydroxyl groups. Evolution has selected a number of different combinations of these elements that lead to efficient catalysis. These differences provide a new mechanistic basis for classifying these ribozymes
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Declining Orangutan Encounter Rates from Wallace to the Present Suggest the Species Was Once More Abundant
BACKGROUND: Bornean orangutans (Pongo pygmaeus) currently occur at low densities and seeing a wild one is a rare event. Compared to present low encounter rates of orangutans, it is striking how many orangutan each day historic collectors like Alfred Russel Wallace were able to shoot continuously over weeks or even months. Does that indicate that some 150 years ago encounter rates with orangutans, or their densities, were higher than now?
METHODOLOGY/PRINCIPAL FINDINGS: We test this hypothesis by quantifying encounter rates obtained from hunting accounts, museum collections, and recent field studies, and analysing whether there is a declining trend over time. Logistic regression analyses of our data support such a decline on Borneo between the mid-19th century and the present. Even when controlled for variation in the size of survey and hunting teams and the durations of expeditions, mean daily encounter rates appear to have declined about 6-fold in areas with little or no forest disturbance.
CONCLUSIONS/SIGNIFICANCE: This finding has potential consequences for our understanding of orangutans, because it suggests that Bornean orangutans once occurred at higher densities. We explore potential explanations-habitat loss and degradation, hunting, and disease-and conclude that hunting fits the observed patterns best. This suggests that hunting has been underestimated as a key causal factor of orangutan density and distribution, and that species population declines have been more severe than previously estimated based on habitat loss only. Our findings may require us to rethink the biology of orangutans, with much of our ecological understanding possibly being based on field studies of animals living at lower densities than they did historically. Our approach of quantifying species encounter rates from historic data demonstrates that this method can yield valuable information about the ecology and population density of species in the past, providing new insight into species' conservation needs
Key Labeling Technologies to Tackle Sizeable Problems in RNA Structural Biology
The ability to adopt complex three-dimensional (3D) structures that can rapidly interconvert between multiple functional states (folding and dynamics) is vital for the proper functioning of RNAs. Consequently, RNA structure and dynamics necessarily determine their biological function. In the post-genomic era, it is clear that RNAs comprise a larger proportion (>50%) of the transcribed genome compared to proteins (≤2%). Yet the determination of the 3D structures of RNAs lags considerably behind those of proteins and to date there are even fewer investigations of dynamics in RNAs compared to proteins. Site specific incorporation of various structural and dynamic probes into nucleic acids would likely transform RNA structural biology. Therefore, various methods for introducing probes for structural, functional, and biotechnological applications are critically assessed here. These probes include stable isotopes such as 2H, 13C, 15N, and 19F. Incorporation of these probes using improved RNA ligation strategies promises to change the landscape of structural biology of supramacromolecules probed by biophysical tools such as nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography and Raman spectroscopy. Finally, some of the structural and dynamic problems that can be addressed using these technological advances are outlined
CLoNe is a new method to target single progenitors and study their progeny in mouse and chick
Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species
Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level
- …