465 research outputs found

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Get PDF
    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10:6 (mass fraction of particles of aerodynamic diameter lower than 10.6 \u3bcm) and PM2:5 (mass fraction of particles of aerodynamic diameter lower than 2.5 \u3bcm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10:6 mass fraction (range 37\u2013135x10-3 m2 g-1 at 375 nm) than for the PM2:5 (range 95\u2013711x10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as lambda-AAE, where the \uc5ngstr\uf6m absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the oxide fraction, which could ease the application and the validation of climate models that now start to include the representation of the dust composition, as well as for remote sensing of dust absorption in the UV\u2013vis spectral region

    The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles

    Get PDF
    Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼105^{5} to 1011^{11} m2^{-2}, respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice-nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds

    The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles

    Get PDF
    Funder: Helmholtz Association of German Research CentresAbstract: Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼105 to 1011 m−2, respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice‐nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds

    A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques

    Get PDF
    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. \u3c br\u3e \u3c br\u3e Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( \u3c i\u3e T ), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, \u3c i\u3e n s, to develop a representative \u3c i\u3e n s( \u3c i\u3e T ) spectrum that spans a wide temperature range (g\u2737 °C \u3c \u3c i\u3e T \u3c g\u2711 °C) and covers 9 orders of magnitude in \u3c i\u3e n s. \u3c br\u3e \u3c br\u3e In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to \u3c i\u3e n s. In addition, we show evidence that the immersion freezing efficiency expressed in \u3c i\u3e n s of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the \u3c i\u3e n s parameterization solely as a function of temperature. We also characterized the \u3c i\u3e n s( \u3c i\u3e T ) spectra and identified a section with a steep slope between g\u2720 and g\u2727 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below g\u2727 °C. While the agreement between different instruments was reasonable below ∼ g\u2727 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in \u3c i\u3e n s was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about g\u2727 and g\u2718 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above g\u2718°C. A possible explanation for the deviation between g\u2727 and g\u2718 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based \u3c i\u3e n s( \u3c i\u3e T ) and geometric surface area-based \u3c i\u3e n s( \u3c i\u3e T ) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis

    Salmonella-Induced Mucosal Lectin RegIIIβ Kills Competing Gut Microbiota

    Get PDF
    Intestinal inflammation induces alterations of the gut microbiota and promotes overgrowth of the enteric pathogen Salmonella enterica by largely unknown mechanisms. Here, we identified a host factor involved in this process. Specifically, the C-type lectin RegIIIβ is strongly upregulated during mucosal infection and released into the gut lumen. In vitro, RegIIIβ kills diverse commensal gut bacteria but not Salmonella enterica subspecies I serovar Typhimurium (S. Typhimurium). Protection of the pathogen was attributable to its specific cell envelope structure. Co-infection experiments with an avirulent S. Typhimurium mutant and a RegIIIβ-sensitive commensal E. coli strain demonstrated that feeding of RegIIIβ was sufficient for suppressing commensals in the absence of all other changes inflicted by mucosal disease. These data suggest that RegIIIβ production by the host can promote S. Typhimurium infection by eliminating inhibitory gut microbiota

    Null Mutations in EphB Receptors Decrease Sharpness of Frequency Tuning in Primary Auditory Cortex

    Get PDF
    Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2−/−;EphB3−/− and EphB3−/− mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q20) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q20 values than either EphB3−/− mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    Get PDF
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve.Peer reviewe

    Genetic and Environmental Causes of Variation in Trait Resilience in Young People

    Get PDF
    The aim of this multi-informant twin study was to determine the relative role of genetic and environmental factors in explaining variation in trait resilience in adolescents. Participants were consenting families (N = 2,638 twins in 1,394 families), from seven national cohorts (age 12–18 years, both sexes) of monozygotic and dizygotic twins reared together. Questionnaire data on the adolescents’ Ego-resilience (ER89) was collected from mothers, fathers and twins, and analysed by means of multivariate genetic modelling. Variance in trait resilience was best represented in an ADE common pathways model with sex limitation. Variance in the latent psychometric resilience factor was largely explained by additive genetic factors (77% in boys, 70% in girls), with the remaining variance (23 and 30%) attributable to non-shared environmental factors. Additive genetic sources explained more than 50% of the informant specific variation in mothers and fathers scores. In twins, additive and non-additive genetic factors together explained 40% and non-shared environmental factor the remaining 60% of variation. In the mothers’ scores, the additive genetic effect was larger for boys than for girls. The non-additive genetic factor found in the twins’ self ratings was larger in boys than in girls. The remaining sex differences in the specific factors were small. Trait resilience is largely genetically determined. Estimates based on several informants rather than single informants approaches are recommended
    corecore