33 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Dog10K : An international sequencing effort to advance studies of canine domestication, phenotypes and health

    Get PDF
    Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health. © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.Peer reviewe

    A bimodal pattern of InsP(3)-evoked elementary Ca(2+) signals in pancreatic acinar cells.

    Get PDF
    InsP(3)-evoked elementary Ca(2+) release events have been postulated to play a role in providing the building blocks of larger Ca(2+) signals. In pancreatic acinar cells, low concentrations of acetylcholine or the injection of low concentrations of InsP(3) elicit a train of spatially localized Ca(2+) spikes. In this study we have quantified these responses and compared the Ca(2+) signals to the elementary events shown in Xenopus oocytes. The results demonstrate, at the same concentrations of InsP(3), Ca(2+) signals consisting of one population of small transient Ca(2+) release events and a second distinct population of larger Ca(2+) spikes. The signal mass amplitudes of both types of events are within the range of amplitudes for the elementary events in Xenopus oocytes. However, the bimodal Ca(2+) distribution of Ca(2+) responses we observe is not consistent with the continuum of event sizes seen in Xenopus. We conclude that the two types of InsP(3)-dependent events in acinar cells are both elementary Ca(2+) signals, which are independent of one another. Our data indicate a complexity to the organization of the Ca(2+) release apparatus in acinar cells, which might result from the presence of multiple InsP(3) receptor isoforms, and is likely to be important in the physiology of these cells
    corecore