458 research outputs found

    Refined procedures for accurate determination of solution structures of nucleic acids by two dimensional nuclear magnetic resonance spectroscopy

    Get PDF
    New procedures have been described for accurate determination of solution structures of nucleic acids. These are two fold; new two dimensional nuclear magnetic resonance techniques and better approaches for interpretation of nuclear magnetic resonance data for structure determination purposes. The significant development in two dimensional nuclear magnetic resonance techniques for this purpose are ω1 -scaling and recording of pure phase spectra. Use ofω1-scaled correlated and nuclear Overhauser effect spectra for estimation of interproton distances and 1H-1H coupling constants has been described. Computer simulation procedures for exact determination of structure have been described. Experimental spectra demonstrating the application of new procedures have been presented

    Application of Resonance Perturbation Theory to Dynamics of Magnetization in Spin Systems Interacting with Local and Collective Bosonic Reservoirs

    Full text link
    We apply our recently developed resonance perturbation theory to describe the dynamics of magnetization in paramagnetic spin systems interacting simultaneously with local and collective bosonic environments. We derive explicit expressions for the evolution of the reduced density matrix elements. This allows us to calculate explicitly the dynamics of the macroscopic magnetization, including characteristic relaxation and dephasing time-scales. We demonstrate that collective effects (i) do not influence the character of the relaxation processes but merely renormalize the relaxation times, and (ii) significantly modify the dephasing times, leading in some cases to a complicated (time inhomogeneous) dynamics of the transverse magnetization, governed by an effective time-dependent magnetic field

    The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts

    Get PDF
    We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the CANDELS UDS and GOODS-South fields. We describe here the survey strategy, the data reduction process, and the data quality. HUGS delivers the deepest and highest quality K-band images ever collected over areas of cosmological interest, and ideally complements the CANDELS data set in terms of image quality and depth. The seeing is exceptional and homogeneous, confined to the range 0.38"-0.43". In the deepest region of the GOODS-S field, (which includes most of the HUDF) the K-band exposure time exceeds 80 hours of integration, yielding a 1-sigma magnitude limit of ~28.0 mag/sqarcsec. In the UDS field the survey matches the shallower depth of the CANDELS images reaching a 1-sigma limit per sq.arcsec of ~27.3mag in the K band and ~28.3mag in the Y-band, We show that the HUGS observations are well matched to the depth of the CANDELS WFC3/IR data, since the majority of even the faintest galaxies detected in the CANDELS H-band images are also detected in HUGS. We present the K-band galaxy number counts produced by combining the HUGS data from the two fields. We show that the slope of the number counts depends sensitively on the assumed distribution of galaxy sizes, with potential impact on the estimated extra-galactic background light (abridged).Comment: Accepted for publication on Astronomy and Astrophysic

    GOODS-Herschel: star formation, dust attenuation, and the FIR-radio correlation on the main sequence of star-forming galaxies up to z=4

    Get PDF
    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z sime 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M* correlation is consistent with being constant sime0.8 up to z sime 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z sime 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z sime 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≄ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts

    Calibrating Extinction-Free Star Formation Rate Diagnostics with 33GHz Free-Free Emission in NGC6946

    Get PDF
    Abridged: Using free-free emission measured in the Ka-band (26-40GHz) for 10 star-forming regions in the nearby galaxy NGC6946, including its starbursting nucleus, we compare a number of SFR diagnostics that are typically considered to be unaffected by interstellar extinction: i.e., non-thermal radio (i.e., 1.4GHz), total infrared (IR; 8-1000um), and warm dust (i.e., 24um) emission, along with the hybrid (obscured + unobscured) indicators of H\alpha+24um and UV+IR. The 33GHz free-free emission is assumed to provide the most accurate measure of the current SFR. Among the extranuclear star-forming regions, the 24um, H\alpha+24um and UV+IR SFR calibrations are in good agreement with the 33GHz free-free SFRs. However, each of the SFR calibrations relying on some form of dust emission overestimate the nuclear SFR by a factor of ~2. This is more likely the result of excess dust heating through an accumulation of non-ionizing stars associated with an extended episode of star formation in the nucleus rather than increased competition for ionizing photons by dust. SFR calibrations using the non-thermal radio continuum yield values which only agree with the free-free SFRs for the nucleus, and underestimate the SFRs from the extranuclear star-forming regions by a factor of ~2. This result likely arises from the CR electrons decaying within the starburst region with negligible escape compared to the young extranuclear star-forming regions. Finally, we find that the SFRs estimated using the total 33GHz emission agree well with the free-free SFRs due to the large thermal fractions present at these frequencies even when local diffuse backgrounds are not removed. Thus, rest-frame 33GHz observations may act as a reliable method to measure the SFRs of galaxies at increasingly high redshift without the need of ancillary radio data to account for the non-thermal emission.Comment: 18 pages, 7 Figures, Accepted for publication in Ap

    The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    Full text link
    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always <~ 2 sigma. Rates in these subsets are consistent with predictions of the two component "A+B" SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust obscured star formation, we incorporate infrared star formation rates into the "A+B" model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions for SNe Ia, although other delay time distributions cannot be ruled out based on our data.Comment: 14 pages, 6 figures, 7 tables, accepted for publication in A

    Near-IR Search for Lensed Supernovae Behind Galaxy Clusters - II. First Detection and Future Prospects

    Get PDF
    Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. A pilot SN search program conducted with the ISAAC camera at VLT is presented. Lensed galaxies behind the massive clusters A1689, A1835 and AC114 were observed for a total of 20 hours split into 2, 3 and 4 epochs respectively, separated by approximately one month to a limiting magnitude J<24 (Vega). Image subtractions including another 20 hours worth of archival ISAAC/VLT data were used to search for transients with lightcurve properties consistent with redshifted supernovae, both in the new and reference data. The feasibility of finding lensed supernovae in our survey was investigated using synthetic lightcurves of supernovae and several models of the volumetric Type Ia and core-collapse supernova rates as a function of redshift. We also estimate the number of supernova discoveries expected from the inferred star formation rate in the observed galaxies. The methods consistently predict a Poisson mean value for the expected number of SNe in the survey between N_SN=0.8 and 1.6 for all supernova types, evenly distributed between core collapse and Type Ia SN. One transient object was found behind A1689, 0.5" from a galaxy with photometric redshift z_gal=0.6 +- 0.15. The lightcurve and colors of the transient are consistent with being a reddened Type IIP SN at z_SN=0.59. The lensing model predicts 1.4 magnitudes of magnification at the location of the transient, without which this object would not have been detected in the near-IR ground based search described in this paper (unlensed magnitude J~25). (abridged)Comment: Accepted by AA, matches journal versio

    A Multiwavelength Study of a Sample of 70 micron Selected Galaxies in the COSMOS Field I: Spectral Energy Distributions and Luminosities

    Get PDF
    We present a large robust sample of 1503 reliable and unconfused 70microm selected sources from the multiwavelength data set of the Cosmic Evolution Survey (COSMOS). Using the Spitzer IRAC and MIPS photometry, we estimate the total infrared luminosity, L_IR (8--1000 microns), by finding the best fit template from several different template libraries. The long wavelength 70 and 160 micron data allow us to obtain a reliable estimate of L_IR, accurate to within 0.2 and 0.05 dex, respectively. The 70 micron data point enables a significant improvement over the luminosity estimates possible with only a 24 micron detection. The full sample spans a wide range in L_IR, L_IR ~ 10^8-10^14 L_sun, with a median luminosity of 10^11.4 L_sun. We identify a total of 687 luminous, 303 ultraluminous, and 31 hyperluminous infrared galaxies (LIRGs, ULIRGs, and HyLIRGs) over the redshift range 0.01<z<3.5 with a median redshift of 0.5. Presented here are the full spectral energy distributions for each of the sources compiled from the extensive multiwavelength data set from the ultraviolet (UV) to the far-infrared (FIR). Using SED fits we find possible evidence for a subset of cooler ultraluminous objects than observed locally. However, until direct observations at longer wavelengths are obtained, the peak of emission and the dust temperature cannot be well constrained. We use these SEDs, along with the deep radio and X-ray coverage of the field, to identify a large sample of candidate active galactic nuclei (AGN). We find that the fraction of AGN increases strongly with L_IR, as it does in the local universe, and that nearly 70% of ULIRGs and all HyLIRGs likely host a powerful AGN.Comment: 31 pages including 31 figures and 6 tables. Accepted for publication in ApJ. The full resolution version is available here: http://www.ifa.hawaii.edu/~jeyhan/paperI/Kartaltepe_70mic_PaperI.pd
    • 

    corecore