1,060 research outputs found

    Cadmium, zinc and iron interactions in the tissues of bank vole Clethrionomys glareolus after exposure to low and high doses of cadmium chloride

    Get PDF
    In present study, bank voles Clethrionomys glareolus were peritioneally injected with different doses of cadmium, 0, 1.5, 3.0 mg Cd/kg body mass. Animals were sacrificed on the 21st day after cadmium exposure and the liver and kidney were obtained for cadmium, zinc and iron analysis using atomic absorption spectrometry. Results showed that cadmium had accumulated in the tissues according to dosage and sex. Cadmium affected the survival and body masses of dosed females. Cadmium decreased the iron concentrations in the liver of voles, whereas zinc concentrations increased in both the kidney and liver

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    A New Hierarchy of Research Evidence for Tumor Pathology: A Delphi Study to Define Levels of Evidence in Tumor Pathology

    Get PDF
    Copyright \ua9 2023 The Authors. Published by Elsevier Inc. All rights reserved. The hierarchy of evidence is a fundamental concept in evidence-based medicine, but existing models can be challenging to apply in laboratory-based health care disciplines, such as pathology, where the types of evidence and contexts are significantly different from interventional medicine. This project aimed to define a comprehensive and complementary framework of new levels of evidence for evaluating research in tumor pathology-introducing a novel Hierarchy of Research Evidence for Tumor Pathology collaboratively designed by pathologists with help from epidemiologists, public health professionals, oncologists, and scientists, specifically tailored for use by pathologists-and to aid in the production of the World Health Organization Classification of Tumors (WCT) evidence gap maps. To achieve this, we adopted a modified Delphi approach, encompassing iterative online surveys, expert oversight, and external peer review, to establish the criteria for evidence in tumor pathology, determine the optimal structure for the new hierarchy, and ascertain the levels of confidence for each type of evidence. Over a span of 4 months and 3 survey rounds, we collected 1104 survey responses, culminating in a 3-day hybrid meeting in 2023, where a new hierarchy was unanimously agreed upon. The hierarchy is organized into 5 research theme groupings closely aligned with the subheadings of the WCT, and it consists of 5 levels of evidence-level P1 representing evidence types that merit the greatest level of confidence and level P5 reflecting the greatest risk of bias. For the first time, an international collaboration of pathology experts, supported by the International Agency for Research on Cancer, has successfully united to establish a standardized approach for evaluating evidence in tumor pathology. We intend to implement this novel Hierarchy of Research Evidence for Tumor Pathology to map the available evidence, thereby enriching and informing the WCT effectively

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore