71 research outputs found

    LONG LIFE FOR THE EASTERN MEDITERRANEAN MESOSCALE EDDIES

    Get PDF
    Abstract The three-dimensional structure of the eastern Mediterranean mesoscale eddies was studied using a combination of a high horizontal resolution numerical model (∌5 km) outputs, in-situ and satellite data. Most of these eddies show good similarity between model results and observations. The structure, formation, development and propagation of each feature were studied separately and the results were then compared. Westward propagation in the southern Ionian Sea and eastward propagation in the southern Levantine Basin were observed with lifetime of more than two years

    The mean circulation of the southwestern Mediterranean Sea: Algerian Gyres

    Get PDF
    This is a study about the general circulation of the southwestern Mediterranean Sea based on observations of currents carried out in the southwestern Mediterranean Sea in the framework of the Mass Transfer and Ecosystem Response (MATER) program (EEC/MAST3 program). From July 1997 to August 2002, profiling floats (MEDPROF experiment), isobaric floats (LIWEX experiment), and moored current meters (ELISA experiment) give evidence of two large-scale barotropic cyclonic circulations, the here-called Western and Eastern Algerian Gyres, centered around [3730â€ČN, 230â€ČE] and [3830â€ČN, 600â€ČE], respectively. These gyres have typical horizontal scales of 100–300 km and are characterized by orbital velocities of about 5 cm/s corresponding to rotational periods of about 4 months. They are strongly related to the bottom topography of the basin and to the planetary vorticity gradient: closed f/H isocontours (f is the planetary vorticity, H the water depth) correspond to the locations of the gyres and favor such circulations as free geostrophic modes. A linear and barotropic model is used to investigate the possibility of wind driving, but the results suggest that the wind stress is not responsible for establishing such circulations. The boundary currents flowing along the continental slope of Africa, Sardinia, and the Balearic Islands are proposed to be the main drivers of these gyres

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea

    Get PDF
    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400–800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    Ocean response in numerical mesoscale modelling during high-wind events over the Gulf of Lions

    No full text
    International audienceThe near-sea surface meteorological conditions associated with strong wind events constitute a strong forcing on the ocean mixed layer. The Gulf of Lions is one of the most windy region of the Mediterranean basin, with frequent Mistral and Tramontane events. These northerly and north-westerly low-level flows, generally induced by a cyclogenesis in the Ligurian basin, transport cold continental air over sea and induce strong momentum and heat exchanges at the air-sea interface. The local continental shelf circulation with sometimes transient coastal upwellings is also sensitive to these intense meteorological events. A preliminary study addresses the question of the sea surface scheme used in mesoscale atmospheric numerical modelling to represent the ocean mixed layer response under these severe wind events. Several slab ocean models have been used coupled with the Weather Research and Forecasting (WRF) model at 21 and 7-km resolution and applied on two Mistral/Tramontane cases. We mainly focused on the slab models performances to represent the ocean mixed layer response under Mistral and Tramontane situations at mesoscale, i. e. local and fast cooling and deepening, and finally we investigated the feedbacks of an interactive ocean mixed layer on the atmospheric simulation. In a second experimental set, the downscaling of the NCEP reanalyses over the full Mediterranean basin has been done with the WRF model between August 1998 and July 1999. The atmospheric fields obtained are then used to drive the regional NEMO-MED12 ocean model with a 1/12° resolution in a perpetual mode. The benefit of increasing the space and time resolutions of the atmospheric forcing (20 to nearly 7 km; daily to 3-hourly) is estimated by a comparison of the ocean model performances to represent the general Mediterranean circulation as the characteristics of the mixed layer, of the deep convection and of the upwellings between the sensitivity experiments, and by a comparison of our experiments to observations and climatologies. A special focus on the local 3D circulation in the Gulf of Lions under high-wind events in these simulations will be presented during the conference

    Modelling of the Mediterranean circulation using atmospheric fields from the WRF model at different space-time resolutions

    No full text
    International audienceIn the framework of the MORCE-MED project, a two-way ocean-atmosphere coupling is developed between the Weather Research and Forecasting (WRF) atmospheric model and the NEMO ocean model over the Mediterranean basin. The future ocean-atmosphere coupled system is part of the future regional numerical platform including also the modelling of the continental superficial layers, atmospheric chemistry and marine biogeochemistry. Forced by global reanalyses or by the global climatic numerical system outputs, the whole regional coupled model aims to study the impacts of the climate change over the Mediterranean basin. Before applying the full two-way interactive coupling between the ocean and atmospheric regional models for long-term simulations over the Mediterranean, the forcing mode is considered through a sensitivity study. The downscaling of the NCEP reanalyses over the full Mediterranean basin with a 20-km resolution has been done with the WRF model between August 1998 and July 1999. The daily atmospheric fields obtained are then used to drive the NEMO model (with a 6-8 km resolution) over the Mediterranean Sea in a perpetual mode during a spinup of 8 years. Then, three experiments are done for a period of 4 years. The first experiment (or control experiment) is the continuity of the spinup. In the second experiment, a higher temporal resolution is used and the frequency of the forcing is 3 hours, which allows a good representation of the diurnal cycle and of the extreme air-sea exchanges that occur with a short duration during severe meteorological events. In the third experiment, a finer spatial resolution of the forcing is applied over the Gulf of Lions area in order to approach the ocean model resolution and to well represent the channelling of the Mistral and Tramontane. The benefit of increasing the space-time resolutions of the atmospheric forcing is estimated by a comparison of the ocean model performances to represent the general Mediterranean circulation as the characteristics of the mixed layer, of the deep convection and of the upwellings between the control experiment and the two sensitivity experiments, and by a comparison of our experiments to observations and climatologies

    Comparing 20 years of precipitation estimates from different sources over the world ocean

    No full text
    The paper compares ten different global precipitation data sets over the oceans and discusses their respective strengths and weaknesses in ocean regions where they are potentially important to the salinity and buoyancy budgets of surface waters. Data sets (acronyms of which are given in Section 2) are categorised according to their source of data, which are (1) in situ for Center for Climatic Research (Legates and Willmott, 1990; Archive of Precipitation Version 3.01, http://climate.geog.udel.edu/~climate), Southampton Oceanography Centre (SOC) (Josey et al., J Clim 12:2856–2880, 1999) and University of Wisconsin-Milwaukee (UWM) (Da Silva et al. 1994); (2) satellite for Microwave Sounding Unit (MSU) (Spencer, J Clim 6:1301–1326, 1993), TOPEX (Quartly et al., J Geophys Res 104:31489–31516, 1999), and Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) (Bauer and Schluessel, J Geophys Res 98:20737–20759, 1993); (3) atmospheric forecast model re-analyses for European Centre for Medium-range Weather Forecast (ECMWF) (Gibson et al. 1997) and National Center for Environmental Prediction (NCEP) (Kalnay et al., Bull Am Meteorol Soc 77:437–471, 1996); and (4) composite for Global Precipitation Climatology Project (GPCP) (satellites and rain gauges, Huffman et al., Bull Am Meteorol Soc 78(1):5–20, 1997) and Climate Prediction Center Merged Analysis of Precipitation (CMAP) (satellites, rain gauges and atmospheric forecast model, Xie and Arkin, Bull Am Meteorol Soc 78(11):2539–2558, 1997). Although there is no absolute field of reference, composite data sets are often considered as the best estimates. First, a qualitative comparison is carried out, which provides for each data set, a description of the geographical distribution of the climatological mean precipitation field. A more careful comparison between data sets is undertaken over periods they have in common. First, six among the ten data sets (SOC, UWM, ECMWF, NCEP, MSU and CMAP) are compared over their common period of 14 years, from 1980 to 1993. Then CMAP is compared to GPCP over the 1988–1995 period and to HOAPS over the 1992–1998 period. Usual diagnostics, like comparison of the precipitation patterns exhibited in the annual climatological means of zonal averages and global budget, are used to investigate differences between the various precipitation fields. In addition, precipitation rates are spatially integrated over 16 regional boxes, which are representative of the major ocean gyres or large-scale ocean circulation patterns. Seasonal and inter-annual variations are studied over these boxes in terms of time series anomalies or correlation coefficients. The analysis attempts to characterise differences and biases according to the original source of data (i.e. in situ or satellite, etc.). Qualitative agreement can be observed in all climatologies, which reproduce the major characteristics of the precipitation patterns over the oceans. However, great disagreements occur in terms of quantitative values and regional patterns, especially in regions of high precipitation. However, a better agreement is generally found in the northern hemisphere. The most significant differences, observed between data sets in the mean seasonal cycles and interannual variations, are discussed. A major result of the paper, which was not expected a priori, is that differences between data sets are much more dependent upon the ocean region that is considered than upon the origin of the data sets (in situ vs satellite vs model, etc.). Our analysis did not provide enough objective elements, which would allow us to clearly recommend a given data set as reference or best estimate. However, composite data sets (GPCP, and especially CMAP), because they never appeared to be really “off” when compared to other data sets, may represent the best recent data set available. CMAP would certainly be our first choice to drive an ocean GCM
    • 

    corecore