1,025 research outputs found

    Simultaneous Detection of H and D NMR Signals in a micro-Tesla Field

    Full text link
    We present NMR spectra of remote-magnetized deuterated water, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in a Ό\muT field, while pulsed techniques are applied -following the sample displacement- in a 100~Ό\muT field, to tip both D and H nuclei by controllable amounts. The broadband nature of the detection system enables simultaneous detection of the two signals and accurate evaluation of their decay times. The outcomes of the experiment demonstrate the potential of ultra-low-field NMR spectroscopy in important applications where the correlation between proton and deuteron spin-spin relaxation rates as a function of external parameters contains significant information.Comment: 7 pages (letter, 4 pages) plus supplemental material as an appendix. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Phys. Chem. Lett., copyright American Chemical Society after peer review. To access the final edited and published work see: pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b0285

    Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

    Full text link
    Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.Comment: published versio

    Coulomb chronometry to probe the decay mechanism of hot nuclei

    Get PDF
    In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajec-tory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy E * = 4.0±\pm0.5 MeV/A. This transition from sequential to simultaneous break-up was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical Review

    Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV

    Full text link
    An analysis of experimental data from the inverse-kinematics ISODEC experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed signatures of a hitherto unknown reaction mechanism, intermediate between the classical damped binary collisions and fusion-fission, but also substantially different from what is being termed in the literature as fast fission or quasi fission. These signatures point to a scenario where the system fuses transiently while virtually equilibrating mass asymmetry and energy and, yet, keeping part of the energy stored in a collective shock-imparted and, possibly, angular momentum bearing form of excitation. Subsequently the system fissions dynamically along the collision or shock axis with the emerging fragments featuring a broad mass spectrum centered around symmetric fission, relative velocities somewhat higher along the fission axis than in transverse direction, and virtually no intrinsic spin. The class of massasymmetric fission events shows a distinct preference for the more massive fragments to proceed along the beam direction, a characteristic reminiscent of that reported earlier for dynamic fragmentation of projectile-like fragments alone and pointing to the memory of the initial mass and velocity distribution.Comment: 5 PAGES, 6 FIGURE

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197Au

    Full text link
    Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R \approx 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the Statistical Multifragmentation Model are in good agreement with the experimental data.Comment: 9 pages, 11 figures, subm. to EPJ

    Bimodality - a general feature of heavy ion reactions

    Full text link
    Recently, is has been observed that events with the {\it same} total transverse energy of light charged particles (LCP) in the quasi target region, E⊄12QTE_{\perp 12}^{QT}, show two quite distinct reaction scenarios in the projectile domain: multifragmentation and residue production. This phenomenon has been dubbed "bimodality". Using Quantum Molecular Dynamics calculations we demonstrate that this observation is very general. It appears in collisions of all symmetric systems larger than Ca and at beam energies between 50 A.MeV and 600 A.MeV and is due to large fluctuations of the impact parameter for a given E⊄12QTE_{\perp 12}^{QT}. Investigating in detail the E⊄12QTE_{\perp 12}^{QT} bin in which both scenarios are present, we find that neither the average fragment momenta nor the average transverse and longitudinal energies of fragments show the behavior expected from a system in statistical equilibrium, in experiment as well as in QMD simulations. On the contrary, the experimental as well as the theoretical results point towards a fast process. This observation questions the conjecture that the observed bimodality is due to the coexistence of 2 phases at a given temperature in finite systems.Comment: accepted PR

    Projected Quasi-particle Perturbation theory

    Full text link
    The BCS and/or HFB theories are extended by treating the effect of four quasi-particle states perturbatively. The approach is tested on the pairing hamiltonian, showing that it combines the advantage of standard perturbation theory valid at low pairing strength and of non-perturbative approaches breaking particle number valid at higher pairing strength. Including the restoration of particle number, further improves the description of pairing correlation. In the presented test, the agreement between the exact solution and the combined perturbative + projection is almost perfect. The proposed method scales friendly when the number of particles increases and provides a simple alternative to other more complicated approaches

    Fragmentation in Peripheral Heavy-Ion Collisions: from Neck Emission to Spectator Decays

    Get PDF
    Invariant cross sections of intermediate mass fragments in peripheral collisions of Au on Au at incident energies between 40 and 150 AMeV have been measured with the 4-pi multi-detector INDRA. The maximum of the fragment production is located near mid-rapidity at the lower energies and moves gradually towards the projectile and target rapidities as the energy is increased. Schematic calculations within an extended Goldhaber model suggest that the observed cross-section distributions and their evolution with energy are predominantly the result of the clustering requirement for the emerging fragments and of their Coulomb repulsion from the projectile and target residues. The quantitative comparison with transverse energy spectra and fragment charge distributions emphasizes the role of hard scattered nucleons in the fragmentation process.Comment: 5 pages, 5 eps figures, RevTeX4, submitted to Phys. Lett.

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte
    • 

    corecore