3,154 research outputs found

    Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques

    Get PDF
    Author's manuscript made available in accordance with the publisher's policy.The stable isotopes of soil water vapor can be useful in the study of ecosystem processes. Modeling has historically dominated the measurement of these parameters due to sampling difficulties. We discuss new developments in modeling and measurement, including the implications of including soil water potential in the Craig–Gordon modeling framework. The stable isotopes of soil water vapor are useful tracers of hydrologic processes occurring in the vadose zone. The measurement of soil water vapor isotopic composition (δ18O, δ2H) is challenging due to difficulties inherent in sampling the vadose zone airspace in situ. Historically, these parameters have therefore been modeled, as opposed to directly measured, and typically soil water vapor is treated as being in isotopic equilibrium with liquid soil water. We reviewed the measurement and modeling of soil water vapor isotopes, with implications for studies of the soil–plant–atmosphere continuum. We also investigated a case study with in situ measurements from a soil profile in a semiarid African savanna, which supports the assumption of liquid–vapor isotopic equilibrium. A contribution of this work is to introduce the effect of soil water potential (Ѱ) on kinetic fractionation during soil evaporation within the Craig–Gordon modeling framework. Including Ѱ in these calculations becomes important for relatively dry soils (Ѱ < −10 MPa). Additionally, we assert that the recent development of laser-based isotope analytical systems may allow regular in situ measurement of the vadose zone isotopic composition of water in the vapor phase. Wet soils pose particular sampling difficulties, and novel techniques are being developed to address these issues

    A Relativistic Type Ibc Supernova Without a Detected Gamma-ray Burst

    Full text link
    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. To date, central engine-driven SNe have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected due to limited satellite sensitivity or beaming of the collimated emission away from our line-of-sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for SNe Ibc with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. The lack of a coincident GRB makes SN 2009bb the first engine-driven SN discovered without a detected gamma-ray signal. A comparison with our extensive radio survey of SNe Ibc reveals that the fraction harboring central engines is low, ~1 percent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Our study demonstrates that upcoming optical and radio surveys will soon rival gamma-ray satellites in pinpointing the nearest engine-driven SNe. A similar result for a different supernova is reported independently.Comment: To appear in Nature on Jan 28 2010. Embargoed for discussion in the press until 13:00 US Eastern Time on Jan 27 (Accepted version, 27 pages, Manuscript and Suppl. Info.

    Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya

    Get PDF
    Publisher’s version made available under a Creative Commons license.The isotopic composition of rainfall (δ2H and δ18O) is an important tracer in studies of the ecohydrology, plant physiology, climate and biogeochemistry of past and present ecosystems. The overall continental and global patterns in precipitation isotopic composition are fairly well described by condensation temperature and Rayleigh fractionation during rainout. However, these processes do not fully explain the isotopic variability in the tropics, where intra-storm and meso-scale dynamics may dominate. Here we explore the use of atmospheric back-trajectory modeling and associated meteorological variables to explain the large variability observed in the isotopic composition of individual rain events at the study site in central Kenya. Individual rain event samples collected at the study site (n = 41) range from −51‰ to 31‰ for δ2H and the corresponding monthly values (rain volume-weighted) range from −15‰ to 15‰. Using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, we map back-trajectories for all individual rain hours occurring at a research station in central Kenya from March 2010 through February 2012 (n = 544). A multiple linear regression analysis demonstrates that a large amount of variation in the isotopic composition of rainfall can be explained by two variables readily obtained from the HYSPLIT model: (1) solar radiation along the trajectory for 48 hours prior to the event, and (2) distance covered over land. We compare the measurements and regression model results to the isotopic composition expected from simple Rayleigh distillation along each trajectory. The empirical relationship described here has applications across temporal scales. For example, it could be used to help predict short-term changes in the isotopic composition of plant-available water in the absence of event-scale sampling. One can also reconstruct monthly, seasonal and annual weighted mean precipitation isotope signatures for a single location based only on hourly rainfall data and HYSPLIT model results. At the study site in East Africa, the annual weighted mean δ2H from measured and modeled values are −7.6‰ and −7.4‰, respectively, compared to −18‰ predicted for the study site by the Online Isotopes in Precipitation Calculator

    Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser-based water vapor isotope analyzers

    Get PDF
    Author's manuscript made available in accordance with the publisher's policy.The isotopic composition of surface fluxes is a key environmental tracer currently estimated with a variety of methods, including: Keeling mixing models, the flux-gradient technique, and eddy covariance. We present a direct inter-comparison of these three methods used to estimate the isotopic ratio of water vapor in surface fluxes (δET) over half-hour periods, with a focus on the statistical uncertainty of each method image We develop expressions for image a function of instrument precision, sample size, and atmospheric conditions. Uncertainty estimators are validated with high frequency (1 Hz) data from multiple configurations of commercial off-axis integrated cavity output spectroscopy (ICOS) systems. We find measurement techniques utilizing the high frequency capabilities of ICOS system outperform those methods where a single average of the isotopic composition is obtained at each height, with improvements attributed to large sample counts and increased variation in observed concentrations. Analytically, and with supporting data, we show that over 30 minute periods the Keeling plot and flux-gradient techniques produce nearly identicalδET and image values, while eddy covariance calculations always introduce more uncertainty given the same high frequency data. This additional uncertainty is proportional to the reciprocal of the correlation coefficient between vertical wind speed and water vapor mixing ratio. Finally, given the inverse relationship between δET uncertainties and the range of water vapor observed, we propose that experimental designs should attempt to maximize both sample count and the coefficient of variation in atmospheric water vapor

    The Optical SN 2012bz Associated with the Long GRB 120422A

    Full text link
    The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i'-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.Comment: 7 pages, 6 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Discovery of Early Optical Emission from GRB 021211

    Get PDF
    We report our discovery and early time optical, near-infrared, and radio wavelength follow-up observations of the afterglow of the gamma-ray burst GRB 021211. Our optical observations, beginning 21 min after the burst trigger, demonstrate that the early afterglow of this burst is roughly three magnitudes fainter than the afterglow of GRB 990123 at similar epochs, and fainter than almost all known afterglows at an epoch of 1d after the GRB. Our near-infrared and optical observations indicate that this is not due to extinction. Combining our observations with data reported by other groups, we identify the signature of a reverse shock. This reverse shock is not detected to a 3-sigma limit of 110 uJy in an 8.46-GHz VLA observation at t=0.10d, implying either that the Lorentz factor of the burst gamma <~ 200, or that synchrotron self-absorption effects dominate the radio emission at this time. Our early optical observations, near the peak of the optical afterglow (forward shock), allow us to characterize the afterglow in detail. Comparing our model to flux upper limits from the VLA at later times, t >~ 1 week, we find that the late-time radio flux is suppressed by a factor of two relative to the >~ 80 uJy peak flux at optical wavelengths. This suppression is not likely to be due to synchrotron self-absorption or an early jet break, and we suggest instead that the burst may have suffered substantial radiative corrections.Comment: 13 pages, 2 figures, ApJL accepted; edits for lengt

    GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment

    Get PDF
    We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg II 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +/- 0.01) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>1 where galaxy mergers occur more frequently.Comment: 8 pages, accepted in Ap

    The Broad-lined Type Ic SN 2003jd

    Get PDF
    The results of a world-wide coordinated observational campaign on the broad-lined Type Ic SN 2003jd are presented. In total, 74 photometric data points and 26 spectra were collected using 11 different telescopes. SN 2003jd is one of the most luminous SN Ic ever observed. A comparison with other Type Ic supernovae (SNe Ic) confirms that SN 2003jd represents an intermediate case between broad-line events (2002ap, 2006aj), and highly energetic SNe (1997ef, 1998bw, 2003dh, 2003lw), with an ejected mass of M_{ej} = 3.0 +/- 1 Mo and a kinetic energy of E_{k}(tot) = 7_{-2}^{+3} 10^{51} erg. SN 2003jd is similar to SN 1998bw in terms of overall luminosity, but it is closer to SNe 2006aj and 2002ap in terms of light-curve shape and spectral evolution. The comparison with other SNe Ic, suggests that the V-band light curves of SNe Ic can be partially homogenized by introducing a time stretch factor. Finally, due to the similarity of SN 2003jd to the SN 2006aj/XRF 060218 event, we discuss the possible connection of SN 2003jd with a GRB.Comment: 19 pages, 19 figures, Accepted for publication in MNRA
    corecore