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Abstract 8	  

The stable isotopes of soil water vapor are useful tracers of hydrologic processes occurring in the 9	  

vadose zone.  The measurement of soil water vapor isotopic composition (δ18O, δ2H) is 10	  

challenging due to difficulties inherent in sampling vadose zone airspace in situ.  Historically, 11	  

these parameters have therefore been modeled as opposed to directly measured, and typically soil 12	  

water vapor is treated as being in isotopic equilibrium with liquid soil water.  We present a 13	  

review of the measurement and modeling of soil water vapor isotopes, with implications for 14	  

studies of the soil-plant-atmosphere continuum.  We also present a case study with in situ 15	  

measurements from a soil profile in a semi-arid African savanna, which supports the assumption 16	  

of liquid-vapor isotopic equilibrium. A contribution of this work is to introduce the effect of soil 17	  

water potential (ψ) on kinetic fractionation during soil evaporation within the Craig-Gordon 18	  

modeling framework. Including ψ in these calculations becomes important for relatively dry 19	  

soils (ψ < -10 MPa).  Additionally, we assert that the recent development of laser-based isotope 20	  

analytical systems may allow for the regular in situ measurement of the vadose zone isotopic 21	  

composition of water in the vapor phase. Wet soils pose particular sampling difficulties, and we 22	  

discuss novel techniques being developed to address these issues. 23	  
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Definitions 24	  

The isotope nomenclature used here is consistent with the most recent guidelines (Coplen, 2011) 25	  

where the decimal values are used in all calculations and “per mil” (‰) values are for display 26	  

purposes only. We use the term “vapor” to refer to water vapor only, and other gaseous 27	  

constituents are referred to as “gas”. We are explicit about the direction of the isotopic 28	  

fractionation factors (e.g. αL/V = RL/RV = εL/V + 1), and where no isotope is specified, α can refer 29	  

to either oxygen or hydrogen fractionation.  30	  

 31	  

aw  thermodynamic activity of water [-] 32	  

D  diffusion coefficient [m2 s-1], with subscript i indicating the minor isotopologue 33	  

δA,δE,δL,δV relative difference of isotope ratios (e.g. δ18O = (18R/18RVSMOW – 1)) of the 34	  

atmosphere, evaporate, soil liquid, and soil vapor, respectively [-] 35	  

αe, αk  equilibrium and kinetic isotopic fractionation factor (e.g. αe,L/V = RL/RV) [-] 36	  

εk  kinetic isotopic fractionation (εk = αk - 1) [-] 37	  

es0, esA  saturation vapor pressure at the evaporating surface and in the atmosphere, 38	  

respectively [kPa] 39	  

θ0, θs, θr volumetric water content of the evaporating surface, saturated and residual water 40	  

contents, respectively [m3 m-3] 41	  

ρw  density of water [kg m-3] 42	  

‰  per mil [-] 43	  

ψ0  water potential at the evaporating surface [MPa] 44	  

n  aerodynamic parameter for adjusting diffusivity ratios [-] 45	  
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hA, h0  humidity of the atmosphere and evaporating surface; hAʹ′ is normalized to the 46	  

evaporating surface [-] 47	  

iRp  isotope ratio of minor isotopologue i to the abundant isotopologue in phase p  48	  

R  ideal gas constant [L kPa mol-1 K-1], distinguished from the isotope ratio (e.g. 49	  

18RL) by having no superscripts or subscripts  50	  

TA, T0  temperature of the atmosphere and evaporating surface [K]51	  
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1. Introduction 52	  

Soil water dynamics are the part of the hydrologic cycle that is most directly relevant to 53	  

vegetation dynamics and productivity (e.g., Rodriguez-Iturbe and Porporato, 2004). Measuring 54	  

the presence, character and fate of soil water has become standard in agricultural and ecosystem 55	  

science. The stable isotopes of liquid soil water are routinely measured to investigate processes 56	  

related to plant water uptake such as relative rooting depth (Jackson et al., 1999), recharge rates 57	  

(Cane and Clark, 1999), and hydraulic redistribution (Dawson, 1993). The isotope values of 58	  

liquid soil water change in response to fractionation processes such as evaporation and 59	  

condensation (Gat, 1996), and are thus dynamically linked to the isotope values of the soil water 60	  

vapor. The isotopic composition of the vapor component of soil water has been much less 61	  

studied than the liquid water component, mainly due to sampling difficulties. However, the 62	  

recent development of laser-based isotope analysis may allow for rapid, in situ measurement of 63	  

soil vapor isotopes. Here we review the measurement and modeling of soil water vapor isotopes, 64	  

with a focus on the implications of isotope fractionation processes on our understanding of 65	  

ecohydrology. 66	  

The stable isotopic composition of water (δ) is defined as δ = (iR/iRstd - 1), where iR is the 67	  

ratio of a rare (denoted i, e.g., 18O) to common isotope (2H/1H or 18O/16O) in sample water, and 68	  

iRstd is the same ratio of the international standard, VSMOW (De Laeter et al., 2003; Gonfiantini, 69	  

1978).  The stable isotope composition of water is a powerful process tracer in ecology, plant 70	  

physiology, meteorology and hydrology (e.g., Brunel et al., 1992; Dawson et al., 2002; Gat, 71	  

1996; Wang et al., 2010). One of the three landmark papers that were identified in physical 72	  

meteorology (Lee and Massman, 2011) is about stable isotopes of water. In this paper, Craig 73	  

(1961) reported the discovery of a robust relationship between oxygen and hydrogen isotopic 74	  
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abundance in precipitation, a relationship now widely known as the Global Meteoric Water Line 75	  

(GMWL), which has become part of general scientific language today.  76	  

The stable isotopic composition of soil water has been used to trace water movement in 77	  

the unsaturated zone (Barnes and Allison, 1988), estimate evaporation rate (Allison and Barnes, 78	  

1983) and trace groundwater recharge (Cane and Clark, 1999).  The isotopic composition of 79	  

water in stems and roots usually reflects the isotopic composition of plant-available soil water 80	  

(Flanagan and Ehleringer, 1991; White et al., 1985), although exceptions can exist in extreme 81	  

environments (Ellsworth and Williams, 2007).  Thus, the isotopic composition of plant stem 82	  

water has been widely used to identify plant water sources (e.g., irrigation, rainwater, 83	  

groundwater) in various ecosystems (Dawson, 1996; Ehleringer and Dawson, 1992; Ehleringer et 84	  

al., 1999). At the watershed scale, water isotopes can be used to trace the catchment water 85	  

movement and storage mechanisms (Brooks et al., 2010).  At the global scale, water isotopes can 86	  

be used to explore global scale land-atmosphere interaction (Hoffmann et al., 2000), to 87	  

reconstruct the past environmental parameters such as ambient temperature and relative humidity 88	  

(e.g., Helliker and Richter, 2008) and to constrain primary productivity (Welp et al., 2011). 89	  

Evaporation from soil, and thus the underlying soil water vapor, can play an important 90	  

role in the hydrologic cycle, particularly in dryland ecosystems (D'Odorico et al., 2007; 91	  

Nicholson, 2000; Risi et al., 2010a; Yoshimura et al., 2006). These ecosystems, such as semi-92	  

arid African savannas, often have significant unvegetated patches and large diurnal and seasonal 93	  

shifts in temperature and water availability leading to important feedbacks in vegetation structure 94	  

(D'Odorico et al., 2007; Nicholson, 2000; Scanlon et al., 2007). For soils in wetter environments, 95	  

water movement in the liquid phase is more prominent than in the vapor phase, although vapor 96	  

flux out of the soil could still be a significant component of the water cycle in these 97	  
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environments. These wet soils pose particular vapor sampling difficulties, which are discussed in 98	  

Section 2.2.  99	  

The redistribution of soil water from wetter layers to drier layers at night (“hydraulic 100	  

redistribution”) is a widespread phenomenon affecting plant community dynamics and the 101	  

evaporative flux of soil water (e.g., Feddes et al., 2001; Mooney et al., 1980). However, in dry 102	  

soils, diurnal shifts in soil temperature gradients can induce the movement of soil water vapor, 103	  

which flows from warmer to cooler layers where it may condense (Abramova, 1969; Bittelli et 104	  

al., 2008; Harmathy, 1969; Philip and de Vries, 1957) and become available to plants 105	  

(Abramova, 1969). This vapor movement can occur in bare soil and have the same effect as 106	  

hydraulic redistribution. For example, observations of soil water content demonstrated that the 107	  

movement of water vapor in soils may enhance the ability of Larrea tridentata to maintain 108	  

photosynthesis level at lower soil water potential (Syvertsen et al., 1975) and contribute up to 109	  

40% of hourly increases in nocturnal soil moisture within the 15–35 cm layer in a seasonally dry 110	  

ponderosa pine forest (Warren et al., 2011). Soil water vapor can also be transported within the 111	  

soils in response to large gradients in the salt content of the soil (Kelly and Selker, 2001). In 112	  

extremely dry soils, the intrusion of atmospheric vapor into the upper few centimeters of soil and 113	  

its condensation can lead to biologically significant increases in liquid soil water content 114	  

(Henschel and Seely, 2008).  115	  

 Land-atmosphere exchange modeling has shown that including a more spatially complex 116	  

and variable evapotranspiration signal relative to precipitation improves the comparison with 117	  

observations (Jouzel and Koster, 1996; Yoshimura et al., 2006). Soil water vapor isotopes can 118	  

help with this parameterization through a combination of measurements and modeling. Due to 119	  

practical difficulties in sampling, soil evaporation isotopic composition has traditionally been 120	  
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modeled rather than measured. The most commonly used model is the Craig-Gordon model 121	  

(Craig and Gordon, 1965; Horita et al., 2008) formulated to estimate equilibrium and kinetic 122	  

isotopic fractionation during evaporation from the ocean surface. This model has been modified 123	  

for various applications (Horita et al., 2008), and recently numerical models of isotope flux from 124	  

the soil have also been developed as alternatives to Craig-Gordon (Braud et al., 2005a; Braud et 125	  

al., 2009b; Haverd and Cuntz, 2010; Mathieu and Bariac, 1996; Melayah et al., 1996a). 126	  

Comparisons among measured and modeled values of soil evaporate isotopic composition have 127	  

shown significant deviations from Craig-Gordon (Braud et al., 2009a; Haverd et al., 2011; 128	  

Rothfuss et al., 2010). Below we describe measurement and modeling techniques, and propose a 129	  

modification for Craig-Gordon specific to dry soils. 130	  

 131	  

2. Measurement 132	  

 Measurements of soil water vapor isotopic composition are scarce (Braud et al., 2009b; 133	  

Haverd et al., 2011; Mathieu and Bariac, 1996; Rothfuss et al., 2010; Stewart, 1972; Striegl, 134	  

1988) due to sampling difficulties. In this section we discuss (1) general techniques for 135	  

measuring water vapor isotopic composition (cryogenic sampling and direct measurement), (2) 136	  

sampling and measuring vapor in the vadose zone, (3) estimating the isotopic composition of soil 137	  

evaporation flux leaving the soil surface. Table 1 lists the measurement and modeling (Section 3) 138	  

methods and relevant references. 139	  

 140	  

2.1 Water vapor sampling and isotope analysis 141	  

The traditional “cold trap” sampling technique for isotope analysis of water vapor 142	  

involves drawing air through a tube immersed in a dry ice-alcohol mixture (for H2O) or liquid 143	  



	   8	  

nitrogen (for H2O and CO2) where the water freezes (Dansgaard, 1953; Pollack et al., 1980; 144	  

Yakir and Wang, 1996). The method has been optimized for efficiency, bringing sampling times 145	  

below 15 minutes depending on the humidity level (Helliker et al., 2002), and for portability 146	  

(Peters and Yakir, 2010). Another recent approach has been to use a molecular sieve to trap 147	  

water vapor quantitatively, from which the collected sample is distilled in the laboratory (Han et 148	  

al., 2006). The water sample then undergoes preparation and analysis – most commonly via mass 149	  

spectrometry after equilibration with CO2 for δ18O determination and reduction via Zn or U for 150	  

δ2H determination, although there are many alternative preparation and sample introduction 151	  

techniques, as well as new optical analytical methods available (de Groot, 2009). 152	  

 Cryogenic sampling of atmospheric water vapor has been performed at various scales 153	  

since the first vertical profile collections in the 1960’s over North America and Europe, which 154	  

included sampling in both troposphere and stratosphere (Araguas-Araguas et al., 2000; Pollack et 155	  

al., 1980; Rozanski, 2005). Near-surface cryogenic atmospheric water vapor sample collections 156	  

have been performed in Europe, Asia, Brazil, and Israel (Risi et al., 2010b; Rozanski, 2005; 157	  

Twining et al., 2006; Yamanaka and Shimizu, 2007; Yu et al., 2005), with one group making 158	  

routine collections since the early 1980s at a surface collection station in Heidelberg, Germany 159	  

(Jacob and Sonntag, 1991; Rozanski, 2005). 160	  

 With the development of relatively portable laser isotope analyzers (Kerstel et al., 1999), 161	  

many airborne and ground-based measurements of δ18O and δ2H have been made (Griffis et al., 162	  

2010; Hanisco et al., 2007; Lee et al., 2005; Webster and Heymsfield, 2003). The laser isotope 163	  

instrumentation allows for direct, rapid (1 to 10 Hz) determination of water vapor isotopic 164	  

composition with uncertainties approaching those of traditional mass spectrometric methods (de 165	  

Groot, 2009; Wang et al., 2009). There are now also remote sensing technologies that produce 166	  
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water isotope data for the atmosphere (Worden et al., 2007), and ground-based Fourier 167	  

Transform Infrared Spectroscopy (FTIR) is developing into a source of this information for the 168	  

lower troposphere (Schneider et al., 2010).  169	  

 170	  

2.2 Soil water vapor sampling and isotope analysis 171	  

Sampling of soil water vapor has been performed in the past using soil gas sampling 172	  

apparatus and, as with atmospheric water vapor, cryogenic traps either in the laboratory (Stewart, 173	  

1972) or the field (Mathieu and Bariac, 1996; Striegl, 1988). The pioneering work of 174	  

Zimmerman et al. (1967) on evaporative enrichment in liquid soil water isotopes includes an 175	  

apparatus that directly collects the vapor resulting from soil evaporation, but this condensed 176	  

vapor was not analyzed. Soil gas sampling via pumping is routinely performed during the 177	  

monitoring and remediation of organic solvent contamination of the subsurface. The solvent 178	  

sampling and pumping devices, however, are not designed for the high concentrations and low 179	  

vapor pressures that characterize soil water vapor relative to organic solvents (e.g., 180	  

trichloroethylene). However, the vadose zone modeling efforts surrounding soil gas sampling 181	  

can help in estimating the area of influence for a given pumping rate and time span. For example, 182	  

the USGS modeling framework MODFLOW now has a module for vadose zone gaseous 183	  

transport (Panday and Huyakorn, 2008). 184	  

The main concern in sampling of soil water vapor for isotope analysis is the fractionation 185	  

of the original isotopic composition through (1) inducing evaporation of the liquid soil water 186	  

during sampling, and (2) condensing vapor inside the sampling apparatus due to the typically 187	  

saturated conditions of soil water vapor (Campbell and Norman, 1998). An approach to reduce 188	  

the risk of inducing evaporation is to pump at low flow rates (<200 mL/min), which has 189	  
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produced reasonable results during initial testing (Section 4). Condensation in the sampling 190	  

apparatus is reduced by minimizing tubing length, using all Teflon or high density polyethelene 191	  

materials on wettable surfaces, and insulating or even heating the tubing if necessary (Griffis et 192	  

al., 2010). In wet soils, various membranes could be used to exclude liquid water from the 193	  

sampling apparatus up to a certain level of pore space saturation. Once the soils reach a low air-194	  

filled porosity level, however, authentic vapor sampling becomes impossible. At this critical 195	  

level, which still needs to be determined empirically for each sampling method and soil type, 196	  

liquid-vapor equilibrium needs to be assumed and the liquid itself analyzed. In a novel approach 197	  

aimed at estimating this liquid soil water isotopic composition in situ, a membrane contactor 198	  

(Membrana) has been shown to provide reliable results across a fairly wide soil temperature 199	  

range (8-21°C) through the controlled evaporation of liquid soil water (Herbstritt et al., 2012). 200	  

 There are two methods for estimating liquid soil water isotopic composition that are 201	  

related to soil water vapor sampling. They involve sampling and analyzing CO2 or water vapor 202	  

that is in isotopic equilibrium with liquid soil water. The CO2 sampling method is based on 203	  

isotope equilibrium between soil CO2 and liquid soil water (Scrimgeour, 1995), which has been 204	  

shown to be complete below the depth of atmospheric CO2 invasion into the soil surface 205	  

(Wingate et al., 2009). This depth of invasion was found to be shallower than 5 cm in 206	  

Mediterranean soils (Wingate et al., 2009), which is consistent with other investigations that 207	  

found good agreement between liquid soil water and CO2 at their shallowest depths – 20 cm 208	  

(Tang and Feng, 2001) and 30 cm (Hesterberg and Siegenthaler, 1991). Interestingly, although 209	  

the uncatalyzed equilibrium reaction between CO2 and H2O reaches equilibrium in about 3 hours 210	  

(Dansgaard, 1953), the enzyme carbonic anhydrase acts as a catalyst in both plant leaves and in 211	  

soil, such that δ18O of CO2 is a good tracer of photosynthetic and respiratory CO2 exchange with 212	  
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the atmosphere (Wingate et al., 2009). It is not clear whether soil water vapor plays a significant 213	  

role in this reaction, but a calculation by Hsieh et al. (1998) estimates the added uncertainty due 214	  

to reactions between different phases of water in the soil at 0.36 ‰ for δ18O. The sampling 215	  

method for CO2 is either with a chamber placed above the soil surface (e.g., Wingate et al., 216	  

2008), or a tube buried in the ground (Tang and Feng, 2001).  217	  

 The second equilibration method involves placing a soil sample in a sealed plastic bag, 218	  

filling the bag with dry air, and allowing the atmosphere inside the bag to reach 100% relative 219	  

humidity at a constant temperature (Wassenaar et al., 2008). The bag is then punctured with a 220	  

syringe connected directly to a laser isotope analyzer, the vapor is analyzed directly and its 221	  

isotopic composition is used along with the equilibration temperature to calculate the soil liquid 222	  

isotopic composition. This method is instructive with respect to the rate of equilibration between 223	  

liquid and vapor phases – from 10 min (free water) to 3 days (clay) at 22 °C – as well as the time 224	  

for the laser isotope analyzer to provide a stable signal (~300 s with a flow rate of ~150 mL/min, 225	  

and a headspace of ~900 mL). For comparison with equilibration in the field, a study in volcanic 226	  

soils of Hawaii estimated an in situ equilibration time of 48 hrs between δ18O of liquid soil water 227	  

and soil CO2 (Hsieh et al., 1998). Another interesting aspect of the plastic bag equilibration 228	  

method is that below 5% volumetric water content, the data was apparently not useable even 229	  

though the headspace reached 100% relative humidity.  This method is similar to direct 230	  

equilibration of soils and plants with CO2 and H2 in the laboratory (Scrimgeour, 1995), which 231	  

was proposed as a good method for obtaining results for very dry samples (<0.5 mL of water).  232	  

A comparison among CO2 equilibration, vacuum distillation and azeotropic distillation 233	  

found fair agreement among the methods, but also showed distinctly poor results for the CO2 234	  

method in samples drier than about 5% moisture content (Hsieh et al., 1998). The equilibration 235	  
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methods for liquid soil water are potentially quite useful in studies of plant xylem and transpired 236	  

water isotopic composition in that they could provide a better representation of plant-available 237	  

water than vacuum and chemical distillation methods, which are performed at elevated 238	  

temperatures and thus can access more tightly bound water in the soil (Araguas-Araguas et al., 239	  

1995; Hsieh et al., 1998; Walker et al., 1994). However, further studies are needed to relate soil 240	  

water held at various water potentials to plant water uptake (e.g., Brooks et al., 2010), liquid-241	  

vapor equilibration times, and liquid-vapor fractionation factors. 242	  

 243	  

2.3 Measuring the isotopic composition of soil evaporation 244	  

 The isotopic composition of soil evaporation can be estimated through sampling water 245	  

vapor above the soil. Measurements of the near-surface atmosphere have been used for this 246	  

purpose to measure vapor efflux from terrestrial ecosystems, including the “Keeling Plot” 247	  

approach using gradients in isotopic composition and bulk concentration of CO2 (Keeling, 1958), 248	  

which has also been applied to water vapor (Wang et al., 2010; Yakir and Sternberg, 2000; 249	  

Yepez et al., 2003). Additional methods include the Flux Gradient (Griffis et al., 2004; Yakir and 250	  

Wang, 1996) and Eddy Covariance techniques (Griffis et al., 2010; Lee et al., 2005). Each of 251	  

these methods involves making measurements at some altitude above the ground surface, and 252	  

thus their results are applicable to a certain horizontal “footprint” from which the vapor 253	  

originated. If this footprint is unvegetated, then the water vapor flux signal can be completely 254	  

attributed to soil evaporation. If there is some vegetation present, however, the measured flux is 255	  

from the combined evapotranspiration. Decomposing this combined signal is possible (Haverd et 256	  

al., 2011; Rothfuss et al., 2010; Wang et al., 2010), but the assumptions involved in estimating 257	  

the transpiration and evaporation end-members currently lead to a high degree of uncertainty. 258	  
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Specifically, the isotopic end-member for transpiration represents an integrated signal weighted 259	  

by the amount of transpired water delivered by each root of each transpiring plant with the active 260	  

flux footprint. If the mean rooting depth changes (e.g., grasses become active), the transpiration 261	  

end-member will change. Thus, characterizing this end-member through time requires regular 262	  

measurement of soil water isotopic composition profiles in a way that captures heterogeneity 263	  

across the footprint, as well as measurement of transpiring leaf area for plant groups with 264	  

differing rooting depths (e.g., grasses, shrubs, trees). Numerical models of soil evaporation 265	  

isotopic composition, discussed below, coupled with land surface dynamic models have made 266	  

some advances in this field (Braud et al., 2009a; Haverd et al., 2011). 267	  

 Another method for measuring soil efflux involves placing a sealed chamber over the 268	  

soil, and measuring the vapors that move up into the chamber (Haverd et al., 2011; Wingate et 269	  

al., 2008). The issues with this type of measurement include making a good seal with the soil 270	  

surface to avoid drawing in atmospheric air, and altering the ambient conditions of the soil. If 271	  

these sources of error can be minimized, chamber methods have the potential to provide good 272	  

point estimates of CO2 and H2O releases from the soil. Chamber measurements are still 273	  

challenging, however, as they necessarily change the ambient conditions, especially with respect 274	  

to wind velocities and concentration gradients for the gases of interest. Improvements are still 275	  

being made, particularly with open-chamber methods (Midwood et al., 2008) and open-path 276	  

isotopic composition sensors (Humphries et al., 2010). 277	  

However, point estimates either with chamber methods, sampling, or in situ 278	  

measurements, must be viewed with caution given the typically large degree of heterogeneity in 279	  

a soil landscape (Ogée et al., 2004). For this reason, integrated landscape-scale estimates of soil 280	  

evaporation will be more useful for investigating overall ecosystem functioning. Thus increasing 281	  
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the size of an atmospheric measurement’s footprint can increase its relevance for scaling up to 282	  

regional and global levels. The next step towards understanding the distribution of soil 283	  

evaporation isotopic composition across a wider range of temporal and spatial scales is modeling 284	  

based on more readily available data (Braud et al., 2009a; Haverd et al., 2011) and improved 285	  

mechanistic understanding (e.g., the effect of water potential on soil evaporation isotopic 286	  

composition as proposed in this paper, Equation 9). 287	  

 288	  

3. Modeling soil water vapor isotopic composition 289	  

Modeling efforts relating to soil water vapor isotopic composition (δV) have focused on 290	  

estimating the isotopic composition of soil evaporation (δE), with reference to the fractionation 291	  

that occurs during the evaporation of liquid soil water (δL). The δE modeling has typically been 292	  

performed in the framework of open-water evaporative fractionation developed by Craig and 293	  

Gordon (1965), and recently numerical isotope transport models have been developed as an 294	  

alternative (Braud et al., 2009a; Braud et al., 2005a; Haverd and Cuntz, 2010; Mathieu and 295	  

Bariac, 1996; Melayah et al., 1996a; Shurbaji and Phillips, 1995). Here we present a discussion 296	  

of (1) equilibrium isotope fractionation between liquid and vapor forms of water from theoretical 297	  

and empirical perspectives, (2) evaporative fractionation and the Craig-Gordon (CG) model, and 298	  

(3) soil water vapor isotope models including modified CG and isotope transport models. 299	  

 300	  

3.1 Liquid-vapor equilibrium isotopic fractionation 301	  

Every isotope fractionation model relies on estimates of the liquid-vapor equilibrium 302	  

fractionation factors (αe,L/V(18O) and αe,L/V(2H); Equation 1), and how this parameter changes 303	  

under different environmental conditions. Temperature is the environmental parameter used for 304	  
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the αe,L/V estimates, and this relationship (αe,L/V-T) has been well characterized experimentally 305	  

(Horita and Wesolowski, 1994; Majoube, 1971). Efforts to model the underlying processes of the 306	  

αe,L/V-T relationship from theory (Chialvo and Horita, 2009; Oi, 2003) have not improved on the 307	  

empirical relationships that have been implemented in studies of evaporation for more than four 308	  

decades (Horita et al., 2008). Thermodynamic modeling based on Equations of State for various 309	  

water molecule isotopoloques, captures the purely empirical relationships well (Japas et al., 310	  

1995; Polyakov et al., 2007). The αe,L/V-T relationship has only been modified slightly since 311	  

(Majoube, 1971) to cover a larger temperature range (Horita and Wesolowski, 1994), with the 312	  

current formulations given in Equations 2 and 3. 313	  

 314	  

αe,L/V (
18O) =

18RL
18RV

        [Equation 1] 315	  
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103 lnαe,L/V (
2H ) =1158.8 T 3

109
!

"
#

$

%
&−1620.1

T 2

106
!

"
#

$

%
&+ 794.84

T
103
!

"
#

$

%
&−161.04+ 2.9992

109

T 3

!

"
#

$

%
&   317	  

[Equation 3] 318	  

 319	  

Three modeling approaches using (1) molecular simulation, (2) theoretical (“ab initio”) 320	  

calculations and (3) thermodynamics have recently been compiled to examine the effects of 321	  

isotopic substitutions on the properties of the water molecule (Chialvo and Horita, 2009). These 322	  

three approaches capture the shape of the observed αe,L/V-T relationships (Equations 2 and 3), but 323	  

the difference among the models is large relative to the level of fractionation seen empirically 324	  

(Table 2). Molecular modeling is used by chemists as a supplement to experimentation in an 325	  
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effort to understand the underlying dynamics in chemical reactions. Various modeling 326	  

approaches are used to depict electron densities and molecular orbital dynamics based on 327	  

energies associated with all bonded and non-bonded atomic interactions.  328	  

Using molecular-based simulation, αe,L/V was estimated based on two contrasting models 329	  

of the water molecule: Gaussian charge polarizable (GCP) and nonpolarizable extended simple 330	  

point charge (SPC/E). The GCP model performed better than SPC/E, but produced fractionation 331	  

factors (αe,L/V) around 5 ‰ higher for αe,L/V(18O) and 500 ‰ higher for αe,L/V(2H) than those αe,L/V 332	  

values found experimentally at 25 ºC (Horita and Wesolowski, 1994; Majoube, 1971). Chialvo 333	  

and Horita (2009) recognized the large deviations of their models from experimental data, and 334	  

suggested a parameterization of their αe,L/V-T relationship that will allow for experimental data to 335	  

create more accurate molecular dynamics models in the future. Two ab initio (“from first 336	  

principles”) models using molecular orbital calculations performed somewhat better relative to 337	  

empirical data, within 4 ‰ for αe,L/V(18O) and 66 ‰ for αe,L/V(2H) (Oi, 2003).   338	  

Lastly, two thermodynamic modeling efforts produced much better results applying 339	  

solute dissolution (Japas et al., 1995) and corresponding states principle (Polyakov et al., 2007) 340	  

approaches, apparently with deviations from empirical data of less than 0.1 ‰ and 1 ‰ for 341	  

αe,L/V(18O) and αe,L/V(2H), respectively, at typical environmental temperatures. Despite their 342	  

different approaches, these two thermodynamic models show very good agreement with each 343	  

other, especially below 50 °C. These approaches do incorporate some empirical data – e.g., 344	  

vapor pressures for solutions of pure isotopically substituted water (D2O and H2
18O).  345	  

Overall, the somewhat empirical thermodynamic modeling (Japas et al., 1995; Polyakov 346	  

et al., 2007) performed much better than the purely theoretical ab initio (Oi, 2003) and molecular 347	  

simulation (Chialvo and Horita, 2009) models. Most importantly, all three approaches, in spite of 348	  



	   17	  

drastic differences in αe,L/V, show the same shape and limit characteristics. Therefore these 349	  

models have the potential to provide insight into the underlying mechanisms of the robust 350	  

empirical αe,L/V-T relationships (Equations 2 and 3), which are still preferred for estimating αe,L/V 351	  

(Gat, 1996; Horita et al., 2008; Kim and Lee, 2011). 352	  

 353	  

3.2 Isotopic fractionation during evaporation from free water 354	  

The empirical αe,L/V values discussed above can be used to calculate the isotopic 355	  

composition of vapor that is in isotopic equilibrium with liquid water at a given temperature. 356	  

This equilibrium is most likely reached in soil pore spaces where sufficient moisture is available 357	  

(Braud et al., 2005a; Braud et al., 2005b; Mathieu and Bariac, 1996), as is illustrated with a case 358	  

study in Section 4. The fractionation during evaporation from a free surface (e.g., the ocean), 359	  

involves both equilibrium (αe) and kinetic (αk) fractionation, and will be described here as a basis 360	  

for the soil evaporation discussion that follows.  361	  

Modeling efforts that include both equilibrium and kinetic fractionation were motivated 362	  

by early observations of marine water vapor being isotopically depleted relative to the 363	  

equilibrium fractionation factor for a given temperature (Craig and Gordon, 1965). Thus, in 364	  

addition to αe,L/V for a given temperature at the evaporating surface (T0), the parameters required 365	  

for the estimation of the kinetic fractionation include relative humidity (h), diffusivity ratios of 366	  

the isotopologues of interest (D/Di), and an aerodynamic parameter (n, Table 3). The variability 367	  

in these kinetic parameters is dominated by relative humidity of the air into which the water is 368	  

evaporating (hA), which must be recalculated (hAʹ′) from the measured value at some height above 369	  

the evaporating surface based on the temperature and activity of water at the evaporating surface 370	  

(Craig and Gordon, 1965; Horita, 2005; Horita et al., 2008; Sofer and Gat, 1975). The overall 371	  
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relationship (Equations 4, 5 and 6) was first described by Craig and Gordon (1965) and is still 372	  

used to estimate isotopic fractionation during evaporation from both a free surface and soil (Gat, 373	  

1996; Horita et al., 2008), with modifications specific to soil evaporation described in the next 374	  

section. As summarized in Horita et al. (2008), the CG model is a physically-based model where 375	  

the air-water interface is at isotopic equilibrium. Above this interface is a laminar flow layer of 376	  

variable thickness, which accounts for additional fractionation due to differences in molecular 377	  

diffusivities of isotopologues. This laminar layer is followed by a turbulent mixing layer, which 378	  

does not contribute to isotope fractionation. 379	  

 380	  

δE =
δL /αe,L/V − hA

' δA − (αe,L/V −1)−εk,L/V
1− hA

' +εk,L/V
     [Equation 4] 381	  

εk,L/V = n(1− hA
' ) D

Di

−1
"

#
$

%

&
'
rm
r

       [Equation 5] 382	  

hA
' =

hAesA
awes0

         [Equation 6] 383	  

  384	  

The “weighting term” rm/r is assumed to be 1 for small water bodies, but can reach 0.5 for 385	  

strongly evaporating systems like the Mediterranean Sea (Gat, 1996). The effect of the 386	  

aerodynamic parameter n (n = 0.5 for free water, 1 for completely laminar flow as in very dry 387	  

soil, see below) is to reduce the kinetic fractionation due to the reduced role of molecular 388	  

diffusion when the turbulent layer interacts strongly with the evaporating surface. Higher 389	  

humidity leads to reduced kinetic fractionation, but its overall effect on δE is not straightforward 390	  

because an increased hAʹ′ leads to both a lower numerator and a lower denominator in Equation 4. 391	  

Interestingly, the thermodynamic activity of water (aw, between ~0.6 in brines to 1 in fresh 392	  
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water) acts to increase the normalized humidity hAʹ′ for evaporation from saline water. The same 393	  

is true for evaporation from soils, as introduced below (Equation 9), when soil water potential is 394	  

used to calculate the activity of soil water. Thus, a reduced activity of water leads to limited 395	  

evaporative enrichment in saline water relative to fresh water exposed to the same conditions 396	  

(Horita, 2005). The necessary field measurements to make a CG calculation are discussed with 397	  

the case study in Section 4. The appropriate height for making the atmospheric measurements is 398	  

above the turbulent mixing layer, given that these values are meant to represent “free 399	  

atmosphere” (Craig and Gordon, 1965; Horita et al., 2008), although this condition is most likely 400	  

not fully satisfied for many applications of the CG model. 401	  

In addition to normalized humidity, the representation of diffusive fractionation has a 402	  

great effect on δE modeled from CG (Braud et al., 2009a). Cappa et al. (2003) provided 403	  

significantly revised diffusivities of water isotopologues (D/Di in Equation 7, Table 2) based on 404	  

gas kinetic theory as well as experimental results, and emphasize the use of skin temperature 405	  

rather than bulk temperature for fractionation calculations. However, evidence for surface 406	  

cooling during evaporation from natural water bodies is not yet available. Thus, the diffusivities 407	  

of Merlivat (1978) are still generally preferred (Lee et al., 2007). Recent evaluations and 408	  

experimental results from Luz et al. (2009) have also suggested that the Merlivat (1978) values 409	  

are still valid. However, if an evaporating body is not well mixed, lower temperatures apparently 410	  

do develop in the top 0.5 mm, and if this temperature structure persists, Cappa et al. (2003) 411	  

clearly showed that diffusivities and associated kinetic fractionation factors can be quite different 412	  

from those calculated based on the temperature of the bulk water. This enhanced fractionation 413	  

may be counteracted by the accumulation of enriched isotopologues at the surface, given the lack 414	  

of mixing required for significant surface cooling to occur (Horita et al., 2008). 415	  
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 416	  

3.3 Modeling the isotopic composition of soil water vapor and soil evaporation 417	  

Due to the difficulty in soil water vapor isotope (δV) sampling in the past, there is little 418	  

information on δV directly collected from soil profiles (Mathieu and Bariac, 1996). Direct 419	  

measurements of in situ soil water vapor δV are now possible and will provide a direct check for 420	  

the utilization of the CG model in various conditions especially for dry soils. An important 421	  

missing component in the application of the CG model to soil evaporation is the effect of water 422	  

potential on the activity of water, which can be easily incorporated with measurements of soil 423	  

moisture or soil water potential, as developed below. 424	  

In recent years, transport-based isotope models such as SiSPAT-isotope model (Braud et 425	  

al., 2009a; Braud et al., 2005a) and Soil-Litter-Iso model (Haverd and Cuntz, 2010; Haverd et 426	  

al., 2011) have been developed to model soil δE, building from analytical solutions for idealized 427	  

cases that were developed previously (Barnes and Allison, 1983).  The Soil-Litter-Iso model was 428	  

compared with other analytical frameworks (Haverd and Cuntz, 2010), and recent testing of the 429	  

model against water vapor isotopic composition data from a chamber placed on top of the soil 430	  

yielded very promising results. The model captures diurnal patterns and a 10-day dry-down quite 431	  

well, although a mean deviation of around 10 ‰ was observed for δ2H between measured and 432	  

modeled values (Haverd et al., 2011). SiSPAT-isotope model was tested using laboratory column 433	  

setup and parameters were calibrated to maximize the model-data agreements. The results 434	  

indicate that the evaporative enrichment process is very sensitive to changes in kinetic 435	  

fractionation (Braud et al., 2009a). 436	  

The numerical models have introduced many important soil parameters such as the soil 437	  

moisture, tortuosity, and water potential, which are not explicitly considered in the CG modeling 438	  
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framework.  The effect of these parameters could be lumped into the kinetic isotope fractionation 439	  

factor (αk) to improve the agreement between model output and observational data for each time 440	  

step and soil layer in the model. The missing key component to test these effects is the direct 441	  

measurement of δE and authentic δSV measurements. The mass-balance framework developed in 442	  

Wang et al. (2012) for direct and continuous quantification of the isotopic composition of leaf 443	  

transpiration could be adopted for quantifying soil δE from measurements, which then can be 444	  

verified using authentic in situ soil water vapor δV measurements.  445	  

The surface boundary condition of the most recent bare soil evaporation numerical model 446	  

provides an isotope evaporative flux based on equilibrium (αe) and kinetic fractionation (αk) 447	  

factors, as well as heat and moisture conservation equations solved for the soil-air interface 448	  

(Haverd and Cuntz, 2010). The αk calculation involves adjusting the molecular diffusivity ratio 449	  

of isotopologues by the aerodynamic parameter n (Equation 7), analogous to Equation 5.  450	  

 451	  

αk,L/V =
Di

D
!

"
#

$

%
&
n

         [Equation 7] 452	  

 453	  

This equation has taken on various forms in models, as summarized and evaluated by Braud et 454	  

al. (2005b).  In an attempt to incorporate the laminar flow development of the soil as it dries, n is 455	  

related to volumetric soil moisture (θ) as first proposed by Mathieu and Bariac (1996) and 456	  

adopted in subsequent numerical models (Braud et al., 2009a; Braud et al., 2005b; Haverd and 457	  

Cuntz, 2010). This relationship (Equation 8) allows for n to vary between 0.5 for saturated 458	  

conditions and 1 for dry soil (“residual” soil moisture) where the laminar layer will have fully 459	  

developed. 460	  
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 461	  

n = (θ0 −θr )na + (θs −θ0 )ns
θs −θr

       [Equation 8] 462	  

 463	  

Where na = 0.5 and ns = 1, and subscripts s, r, and 0 refer to saturated, residual and ambient 464	  

conditions at the evaporating surface, respectively. In the original formulation θr was defined as 465	  

the minimum soil moisture reached when the soil is in equilibrium with the atmosphere (Mathieu 466	  

and Bariac, 1996). 467	  

The numerical models also include the humidity of the soil modeled from soil water 468	  

potential as part of their evaporative flux formulation (Braud et al., 2009a; Braud et al., 2005a; 469	  

Mathieu and Bariac, 1996). However, they do not take into account the relationship between 470	  

water potential and the activity of the water, aw, which is provided by the Kelvin equation 471	  

(Equation 9; Barnes and Gentle, 2011; Gee et al., 1992).   472	  

 473	  

ln(aw ) =
ψ0Mw

RT0ρw
        [Equation 9] 474	  

 475	  

where ψ0 is soil water potential [kPa] of the evaporating surface, Mw is the molecular weight of 476	  

water (18.0148 [g mol-1]), R is the ideal gas constant (8.3145 [mL MPa mol-1 K-1]), ρw is the 477	  

density of water, and T0 is the temperature [K] of the evaporating surface. 478	  

The activity of water is equivalent to the relative humidity in the soil under liquid-vapor 479	  

equilibrium, a relationship that is commonly used to measure water potential in soils through 480	  

devices that measure the dew point in a sealed chamber that contains a soil sample (Gee et al., 481	  

1992). When considered with the CG model framework, a reduction in aw increases the 482	  
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normalized humidity hAʹ′ (Equation 6), reducing εk,L/V (Equation 5), ultimately affecting the δE 483	  

calculation (Equation 4). This modification of hAʹ′ is identical to the normalization using the 484	  

activity of water in saline waters (Horita et al., 2008). Thus, it can be easily incorporated into CG 485	  

formulations by combining Equations 6 and 9. The effect of including the water potential in a 486	  

CG model calculation of δE is illustrated with measurements of a soil profile at Mpala Research 487	  

Center, Kenya described in Section 4 below.   488	  

In addition to the effects of water potential on fractionation during evaporation, the 489	  

relationship between equilibrium fractionation in soils and water potential has yet to be 490	  

rigorously described. There are strong indications from the equilibration of CO2 with soil water 491	  

that dry soils exhibit a different equilibrium behavior than wet soils (Hsieh et al., 1998; 492	  

Wassenaar et al., 2008). In reviewing some field collections of soil water vapor, Mathieu and 493	  

Bariac (1996) commented that in dry soils the observed vapor was more enriched than would be 494	  

expected from equilibrium fractionation at the given temperature. Changes in water structure and 495	  

properties such as vapor pressure due to confinement in small spaces such as soil pores have 496	  

been recently reported for bulk water in carbon nanotubes (Chaplin, 2010) and for hydrogen 497	  

isotopes in water adsorbed to porous silica tubes, leading to significant differences in equilibrium 498	  

isotope fractionation between liquid and vapor phases (Richard et al., 2007).  499	  

An interesting early experiment on water isotopic fractionation in clays (Stewart, 1972) 500	  

used a saturated KCl solution as the moisture source for vapor that was allowed to equilibrate 501	  

with a thin layer of dried clay. In this KCl-vapor-clay system, a wide range of isotopic 502	  

fractionation factors was observed (αL/V(2H)clay = 0.93 to 1.06, with a median of 1.04; HDO 503	  

concentration ratios of Stewart (1972) were divided by the estimated αL/V(2H)KCl = 1.06). The 504	  

temperatures weren’t controlled, and a value of αL/V(2H)KCl as low as 1.06 would require a 505	  
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temperature >40 ºC using Equation 3 (Horita and Wesolowski, 1994). Nevertheless, the 506	  

indication is that αL/V(2H)clay can have a wide range, but with values below the isotopic 507	  

fractionation factor for free water at a given temperature. Interestingly, the recent analogous 508	  

work with porous silica tubes instead of clays (Richard et al., 2007) found αL/V(2H) values of 509	  

around 1.03 at 20 % relative humidity and 1.05 at 80 % relative humidity at around 20 ºC, 510	  

compared with 1.085 from Equation 3. Thus, these results are somewhat consistent with the less-511	  

controlled early study with clays, suggesting that the equilibrium isotopic fractionation between 512	  

vapor and water adsorbed on clays is lower than the free water value at the same temperature. 513	  

A final consideration towards understanding the isotopic composition of soil water vapor 514	  

is the organization of water molecules within the liquid phase. It has been shown that enriched 515	  

isotopologues exist at higher concentrations near dissolved ions, and thus near particle surfaces 516	  

(Phillips and Bentley, 1987). Given this structure, there could potentially be a concentration of 517	  

depleted isotopes near the evaporating surface of porewater. This “hydration sphere isotope 518	  

effect” would cause isotopic differences between bulk water and the evaporating surface and 519	  

require a stagnant solution, similar to the skin temperature effect shown by Cappa et al. (2003). 520	  

The impact of isotopic gradients within individual pockets of liquid soil water on δE has not been 521	  

explored. If an isotopic difference exists between bulk water and the evaporating surface, this 522	  

could be another reason to use equilibration analytical methods on undisturbed soils for 523	  

estimating liquid isotopic composition (Herbstritt et al., 2012; Hsieh et al., 1998; Scrimgeour, 524	  

1995; Wassenaar et al., 2008). 525	  

The isotopic composition of soil evaporation is the result of several different fractionation 526	  

processes. First, the phase change and equilibrium processes within the soil matrix are governed 527	  

by temperature and soil water potential. Kinetic fractionation is affected by physical 528	  
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characteristics of the diffusion path (e.g. tortuosity) as well as isotopic gradients between the site 529	  

of evaporation and the initiation of turbulent mixing just above the soil surface. Vapor moving 530	  

vertically through the soil will also likely re-equilibrate with the liquid water along its path. The 531	  

overall apparent fractionation between liquid water at any given depth and the resultant 532	  

evaporative flux leaving the soil surface reflects all of these fractionation processes. As the liquid 533	  

water sources for soil evaporation fluctuate in depth and isotopic composition, modeling the soil 534	  

evaporation isotopic end-member accurately at any given time becomes very difficult. Thus, 535	  

techniques for measuring the evaporated vapor itself will be very important as this field moves 536	  

forward. In the next section we provide an example of one step in this direction: direct 537	  

measurements within the soil matrix. 538	  

 539	  

4. Case Study: Soil water vapor in an African savanna 540	  

An example of direct soil water vapor isotope measurement is shown in Figure 1, with 541	  

data from a single profile collected at Mpala Research Centre, Kenya, on 29 March 2011 from 542	  

12:45 to 13:00 local time. The soil is a red sandy loam with a bulk density of 1.45 [g cm-3] and a 543	  

porosity of 0.45. The vegetation is mixed semi-arid savanna, and the local mean annual 544	  

precipitation is around 600 mm. Soil vapor was sampled at four depths (5, 10, 20 and 30 cm; 545	  

sampled in depth order starting with 5 cm) via buried Teflon tubing, with the final 10 cm of each 546	  

tube perforated and packed with glass wool. Soil vapor was drawn directly into a laser water 547	  

vapor isotope analyzer (DLT100, Los Gatos Research Inc., Mountain View, CA) at a flow rate of 548	  

150-180 mL/min, diluted with ambient air (intake at 2 m above ground) for a total flow of 400 549	  

mL/min. This dilution allowed for reduced flow rates at the soil vapor intakes and lowered the 550	  

humidity in the tubing and analytical equipment to reduce the chance of forming condensation. 551	  
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Data was collected for around 90 seconds at each depth. Soil temperature was measured with 552	  

TCAV averaging soil temperature probes (Campbell Scientific Inc., Logan, UT) at 5 and 20 cm, 553	  

and a linear profile was assumed for 10 and 30 cm. Ambient atmospheric water vapor isotopic 554	  

composition, humidity and temperature were sampled at 2 m above the ground surface. Soil 555	  

samples were collected from an auger hole adjacent to the buried tubing immediately after vapor 556	  

sampling. Water potential was measured via a dew point potentiometer (WP4T, Decagon 557	  

Devices Inc., Pullman, WA). Liquid soil water was isolated via cryogenic vacuum distillation 558	  

(West et al., 2006) and analyzed with a continuous-flow water vapor isotope analyzer using a 559	  

heated nebulizer for sample introduction (WVISS, Los Gatos Research, Inc.).  560	  

Equilibrium water vapor isotopic compositions were calculated for each depth based on 561	  

the respective measured liquid soil water isotopic composition, soil temperature and the 562	  

associated fractionation factors (Equations 1 to 3). For each depth, the corresponding CG 563	  

modeled values were calculated in two ways: (1) conventionally, using Equations 2 to 8 564	  

assuming aw =1 (Figure 1 and Table 3, δE (θ,T)); (2) including soil water potential by calculating 565	  

aw with Equation 9 (δE (θ,T,ψ)). The parameters for CG calculations are given in Table 3 with 566	  

specific examples and typical ranges. 567	  

The measured soil vapor isotope values fell close to those that would be expected for 568	  

isotopic equilibrium at the temperature for each depth (Figure 1). The measured values cover a 569	  

reduced range (-4.0 to -2.2 ‰ for δ18O) relative to the equilibrium values (-7.5 to 4.1 ‰ for 570	  

δ18O), but have similar mean values of -2.8 ‰ and -3.0 ‰ for δ18O and -57 ‰ and -65 ‰ for 571	  

δ2H, respectively. These mean values are weighted by soil moisture contents (θ0) of 5.3, 6.0, 6.2, 572	  

and 6.6 vol% for 5, 10, 20 and 30 cm, respectively. The fact that the measured vapor isotope 573	  

values fall in a smaller range, but within the calculated equilibrium values, suggests that either 574	  
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the sampling process induced mixing of vapor from various depths, or that the vapor is 575	  

somewhat mixed within the sampling depths at this time of day. Sampling-induced mixing is 576	  

likely given that around 0.5 to 0.6 L of soil were influenced by the sampling at each depth. 577	  

Subtracting volumetric water contents from a porosity of 0.45 gives air-filled porosity values of 578	  

0.38 to 0.39, resulting in a radius of influence of about 7 cm around each perforated section of 579	  

tubing, suggesting that the sampling depths overlap to some degree. The three sets of values – 580	  

liquid, measured vapor and equilibrium vapor – have similar slopes of 3.1, 3.4, and 3.0 (δ2H vs. 581	  

δ18O). Although this level of consistency among slopes is encouraging within the scope of the 582	  

present study, a second study is needed to examine the differences in these slopes relative to 583	  

differences in fractionation factors as well as the combined uncertainties in δ2H and δ18O. 584	  

Interestingly, the measured soil water vapor isotope values are much closer to the equilibrium 585	  

vapor isotope values than the CG modeled δE values (Figure 1). This example is therefore 586	  

consistent with the typical assumption of isotopic equilibrium between liquid and vapor in the 587	  

soil (e.g., Mathieu and Bariac, 1996). 588	  

The effect of including water activity (i.e., soil water potential, ψ) in the CG calculations 589	  

depends on the relationships among equilibrium vapor, ambient vapor, and ambient humidity. To 590	  

examine these relationships as well as the effect of including soil water content (θ), we made a 591	  

series of CG calculations starting with the 5 cm depth parameters of Figure 1 and Table 3. We 592	  

varied ψ0 and calculated θ0 using a relationship of the form:  593	  

 594	  

θ =
a
−ψ
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1/b

         [Equation 10] 595	  

 596	  
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where a = 0.00109 and b = 3.46, based on 410 paired measurements of ψ and θ for 14 separate 597	  

drying experiments. The measured values ranged from -0.2 MPa to -61 MPa for ψ and 1 vol% to 598	  

41 vol% for θ. 599	  

We then calculated δE using Equations 2 to 9 (Figure 2, solid black lines). We also varied 600	  

three atmospheric parameters TA, δA and hA (Figure 2, dashed black lines). Lastly, we made the 601	  

same calculations without considering θ (i.e., n = 1) or ψ (i.e., aw = 1), and used both 602	  

conventional (Merlivat, 1978) and revised (Cappa et al., 2003) values for equilibrium isotope 603	  

fractionation factors (Figure 2, gray lines). From these calculations it is clear that for drying 604	  

soils, the effect of including ψ can be similar to or greater than the effect of including θ (i.e., 605	  

changing n from 0.5 to 1). Including θ (Equation 8), which leads to n=0.5 in the wettest soils (θ0 606	  

close to 0 MPa), leads to more enriched δE values in wetter soils. Including ψ (Equation 9) 607	  

apparently leads to the opposite effect, with more enriched δE values in drier soils. Both 608	  

mechanisms can be correct, with the former (lower n and higher δE in wetter soils) describing the 609	  

decrease in kinetic fractionation as the soil evaporation becomes more controlled by atmospheric 610	  

turbulence than by diffusion in the soil (Mathieu and Bariac, 1996). The latter (higher hAʹ′ and 611	  

higher δE in drier soils) simply describes the effect of lower water activity on the saturation 612	  

vapor pressure in the soil. This soil water potential effect can also be as large as the impact of 613	  

using the drastically different diffusivity ratios of Cappa et al. (2003) rather than those of 614	  

(Merlivat, 1978).   615	  

 616	  

5. Conclusions 617	  

We summarized all the available modeling and field methods to quantify isotopic 618	  

composition of water vapor, with a focus on the Soil-Plant-Atmosphere Continuum. When 619	  
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applying the Craig-Gordon (CG) modeling framework to soil evaporation, we suggest the 620	  

inclusion of soil water potential in the normalization of “free atmosphere” humidity to the 621	  

evaporating surface (Equations 6 and 9), just as water activity is included in the normalization 622	  

for evaporation from saline waters. This will reduce the total fractionation for evaporation from 623	  

unsaturated soils as predicted by the CG model. Such a reduction is consistent with observations 624	  

of enriched soil water vapor, and can be significant in soils with water potentials drier than 625	  

around -10 MPa. This improvement is easily implemented in all CG formulations, and the only 626	  

additional measurement required is soil water potential. This parameter can also be calculated 627	  

from soil water content using an appropriate soil water retention curve. There is also a possibility 628	  

that leaf water potential could be used to improve the use of normalized humidity in application 629	  

of the CG model to evaporative isotopic enrichment in leaves (e.g., Cuntz et al., 2007), although 630	  

leaf water potential is highly variable and more difficult to estimate than soil water potential. 631	  

Another feature of isotopic fractionation in soil water that is likely to change through 632	  

experimentation is the equilibrium fractionation factor. The equilibrium fractionation for free 633	  

water is still represented empirically. The indication from experiments between vapor and water 634	  

adsorbed onto clay and silica tubes is that liquid-vapor equilibrium fractionation is substantially 635	  

reduced in a porous media setting relative to free water. The structure of water changes in 636	  

confined spaces, and it is expected that the nature of pore spaces in different types of soils will 637	  

lead to different equilibrium fractionation factors. The use of stable isotopes of water vapor in 638	  

understanding the Soil-Plant-Atmosphere Continuum at various scales depends on an accurate 639	  

understanding of fractionation processes and the associated modeling of isotopic fluxes in the 640	  

environment. The relatively new analytical capabilities for water vapor isotopes coupled with 641	  
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novel sampling approaches under development will provide the necessary data to follow these 642	  

fractionation processes in situ. 643	  
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Table 1: Summary of measurement and modeling techniques to quantify isotopic compositions 975	  
of soil water vapor and soil evaporation. 976	  

† - These methods are used to estimate liquid soil water isotopic composition, but the details of 977	  

the equilibrium and sampling methods are relevant to soil water vapor isotopes.  978	  

Potential methods Notes References 
Measurement: 
Isothermal equilibrium 
(H2O, CO2, H2)† 

Inside the laboratory Stewart 1972, Scrimgeour 1995, Hsieh et al. 1998, Richard 
et al. 2007, Wassenaar et al. 2008 

In situ CO2-H2O 
equilibrium† 

In vadose zone Hesterberg and Siegenthaler 1991, Hsieh et al. 1998, Tang 
and Feng 2001, Wingate et al. 2008 

Cryogenic soil column 
vapor collection Inside the laboratory Zimmerman 1967, Stewart 1972, Braud et al. 2009ab; 

Rothfuss et al. 2010 
In situ cryogenic soil gas 
sampling In vadose zone Striegl 1988, references in Mathieu and Bariac 1996 

In situ sealed chamber From soil surface Haverd et al. 2011 
Open chamber with mass 
balance From soil surface Wang et al. 2012 

In situ direct 
measurement with laser 
spectroscopy 

In vadose zone This manuscript 

Modeling: 

Craig-Gordon Model Formulated for free 
water evaporation Craig and Gordon 1965, Horita et al. 2008 

Analytical isotope 
transport models  Zimmerman et al. 1967, Barnes and Allison 1983 

Numerical isotope 
transport models 

Varied results, but 
capture the shape of 
observations well 

Shurbaji and Phillips 1995, Mathieu and Bariac 1996, 
Melayah et al. 1996a,b, Braud et al. 2005a,b,  Braud et al. 
2009ab, Harverd and Cuntz 2010, Haverd et al. 2011   
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Table 2:  Liquid-vapor isotopic fractionation factors for water. See Horita et al. (2008) for 979	  

compiled historical values. Equilibrium values are listed for 25 °C unless noted. 980	  

 αL/V(18O) αL/V(2H) Description Ref. 

Equilibrium: 
Best current values 
(empirical) 

1.00935 1.07875 Combination of evaporation 
experiments 

1 

ab initio 1.008† 1.107 HF calculation level 2 
ab initio 1.013 1.145 B3LYP calculation level 2 
Molecular simulation 1.016 1.622 Gaussian charge polarizable  3 
Molecular simulation 1.018 1.612 Nonpolarizable extended simple 

point charge 
3 

Thermodynamics 1.0094 1.0798 Corresponding states principle 4,5 
Empirical - dried clay NA 1.04‡ See text 6 
Empirical - silica tubes NA 1.055§ See text 7 

Kinetic (D/Di): 
Best current values 
(empirical) 

1.0285 1.0251 Evaporation at 20 ºC in air 8 
1.0281 1.0249 Evaporation at 20 ºC in N2 8 

Recent experiment 1.0275 1.0230 Values from the 20.1 ºC 
experiment in air 

9 

Gas kinetic theory 1.0323 1.0166 In dry air; Isotopologues have 
identical collision diameters 

10 

Gas kinetic theory 1.0319 1.0164 In N2; Isotopologues have identical 
collision diameters 

11 

 981	  

Italics indicate modeled values. 982	  

References: 1 - Horita and Wesolowski 1994; 2 - Oi 2003; 3 - Chialvo and Horita 2009; 4 - Japas 983	  

et al. 1995; 5 - Polyakov et al. 2007; 6 - Stewart 1972; 7 - Richard et al. 2007; 8 - Merlivat 1978; 984	  

9 - Luz et al. 2009; 10 - Horita et al. 2008; 11 - Cappa et al. 2003 985	  

† – All equilibrium model values (ab initio, molecular dynamic, and thermodynamic) are 986	  

estimated from Figures 4, 6 and 8 from Chialvo and Horita (2009); ab initio means “from first 987	  

principles” 988	  

‡ - Temperature unknown -- listed as "room temperature"; the listed αL/V(2H) value (1.04) is the 989	  

median of 0.93 to 1.06 (n = 7), see text for details. 990	  
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§ - Temperature is 20 ºC rather than 25 ºC. The free water αL/V(2H) value at 20 ºC is 1.08453 991	  
from Equation 3. The listed value (1.055) was the maximum observed, corresponding to relative 992	  
humidity (RH) values above ~70%. Lower RH conditions corresponded to lower values of 993	  
αL/V(2H) down to around 1.30 at 10% RH. 994	  

  995	  
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Table 3: Craig-Gordon model parameters, and example calculations of δE for free water and soil 996	  

water. The example data were collected on 29 March 2011 at Mpala Research Center, Kenya, 997	  

from a soil profile fitted with buried Teflon tubing from which air was drawn directly into a 998	  

Water Vapor Isotope Analyzer (DLT-100, Los Gatos Research Inc., Mountain View, CA). 999	  

Parameter Example – Mean of  
5, 10, 20, and 30 cm 

Example – 5 cm Typical range 

TA 302 302 280 to 310 
T0 300 301 290 to 320 
hA 0.331 0.331 0.2 to 0.6 

hA'(T) 0.374 0.351 
0.2 to 1.0 

hA'(T, ψ) 0.429 0.433 

ψ0 -18.8 -29.2 -1 to -100 

θ0 0.0602 0.0525 0.01 to 0.45 

θs 0.45 0.45 0.2 to 0.5 

θr 0.035 0.035 0.01 to 0.05 
Depth min [cm] 5 5 

10 to 50‡ Depth max [cm] 30 5 

n (θ) 0.970 0.979 0.5 to 1.0 
n (free water) 0.5 0.5 0.5 

 δ18O δ2H δ18O δ2H δ18O δ2H 
αe,L/V 1.009206 1.07693 1.009117 1.07579 1.008 to 1.010 1.059 to 1.088 
D/Di 1.0285 1.0251 1.0285 1.0251 1.028 to 1.032 1.016 to 1.025 

εk,L/V(θ,T) 0.01728 0.01523 0.01810 0.01596 0.001 to 0.023 0.001 to 0.020 

εk,L/V(θ,T,ψ) 0.01578 0.01391 0.01581 0.01394 

εk,L/V(free water,T) 0.00891 0.00786 0.00925 0.00815 0.001 to 0.014 0.001 to 0.013 
rm/r 1 1 1 1 0.5 to 1.0 0.5 to 1.0 

δL 6.2† 6.5 13.2 26.2 -5 to 10 -30 to 30 

δV (meas) -2.8 -56.6 -2.2 -54.6 NA NA 

δV (equil) -3.0 -65.4 4.1 -46.1 -15 to 3.0 -120 to -30 

δA -10.4 -68.7 -10.4 -68.7 -10 to -20 -50 to -150 

Calculated Evaporate:   

δE (θ,T) -25.6 -94.3 -15.7 -65.1   
δE (θ,T,ψ) -24.5 -94.6 -12.6 -61.3   

δE (free water,T) -12.7 -83.7 -2.5 -54.0   

‡ Typical evaporating front depth from Barnes and Allison (1988) 1000	  
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† - All isotope values are presented here in per mil notation (δ x 1000), whereas in calculations 1001	  

they are converted to decimal notation (e.g. Equation 4, resulting in -25.6 ‰ for “δE (θ, T)” in 1002	  

column 2 above): 1003	  

δE =
0.0062 /1.009206( )− 0.374(−0.0104)− 0.009206− 0.01728

1− 0.374+ 0.01728
= −0.0256  1004	  

  1005	  
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 1006	  

Figure 1: Measured and calculated isotope values of liquid and vapor phase water from a soil 1007	  

profile sampled 29 March 2011 in sandy loam soil at Mpala Research Center, Kenya (see Section 1008	  

4 and Table 3). Sampling depths are shown for the liquid soil water samples, and each set of 1009	  

vapor values follows the same depth sequence. Two sets of δV values are shown: “δV(meas)” was 1010	  

measured directly in the field with a Water Vapor Isotope Analyzer (DLT-100, Los Gatos 1011	  

Research Inc., Mountain View, CA); “δV(equil)” was calculated using soil temperature and liquid 1012	  

soil water isotopic composition (Equations 1 to 3). Craig-Gordon model δE values were 1013	  

calculated in two ways: “δE(θ,T)” was calculated conventionally, considering volumetric water 1014	  
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content and soil temperature (Equations 2 to 8); “δE(θ,T,ψ)” was calculated by additionally 1015	  

considering soil water potential (Equations 2 to 9).  1016	  
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 1017	  

Figure 2: Craig-Gordon model calculations (Equations 2 to 9) for δ2H across a range of soil 1018	  

water potentials (ψ) and ambient atmospheric parameters. The measured and calculated 1019	  

parameters for the 5 cm depth example of Table 3 and Figure 1 are used as a starting point, and 1020	  

these values are shown with the same symbols as in Figure 1. Each panel shows five “Cases.” 1021	  

Cases 1 and 2 were calculated without considering soil moisture content or soil water potential 1022	  

(i.e., n = 1 and aw = 1), and use the contrasting αk values of Cappa et al. (2003) and Merlivat 1023	  

(1978), respectively. Cases 3, 4 and 5 show the effects of varying one of three atmospheric 1024	  

parameters: relative humidity (hA) in panel A, water vapor isotopic composition (δA) in panel B, 1025	  

and temperature (TA) in panel C. Case 3 always uses the measured values (hA = 0.331, δA = -68.7 1026	  
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‰, TA = 28.8 °C), whereas Cases 4 and 5 use lower and higher bounds, respectively, of a range 1027	  

that one could expect in the field (hA ± 0.1, δA ± 5 ‰, and TA ± 2 °C). 1028	  

 1029	  
 1030	  




