Long duration gamma-ray bursts (GRBs) mark the explosive death of some
massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They
are distinguished by the production of an energetic and collimated relativistic
outflow powered by a central engine (an accreting black hole or neutron star).
Observationally, this outflow is manifested in the pulse of gamma-rays and a
long-lived radio afterglow. To date, central engine-driven SNe have been
discovered exclusively through their gamma-ray emission, yet it is expected
that a larger population goes undetected due to limited satellite sensitivity
or beaming of the collimated emission away from our line-of-sight. In this
framework, the recovery of undetected GRBs may be possible through radio
searches for SNe Ibc with relativistic outflows. Here we report the discovery
of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb,
which requires a substantial relativistic outflow powered by a central engine.
The lack of a coincident GRB makes SN 2009bb the first engine-driven SN
discovered without a detected gamma-ray signal. A comparison with our extensive
radio survey of SNe Ibc reveals that the fraction harboring central engines is
low, ~1 percent, measured independently from, but consistent with, the inferred
rate of nearby GRBs. Our study demonstrates that upcoming optical and radio
surveys will soon rival gamma-ray satellites in pinpointing the nearest
engine-driven SNe. A similar result for a different supernova is reported
independently.Comment: To appear in Nature on Jan 28 2010. Embargoed for discussion in the
press until 13:00 US Eastern Time on Jan 27 (Accepted version, 27 pages,
Manuscript and Suppl. Info.