605 research outputs found

    A surprising method for polarising antiprotons

    Full text link
    We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to v/c0.002v/c \approx 0.002 the cross section for spin-flip is as large as about 210132 \cdot 10^{13} barn as shown by new QED-calculations of the triple spin-cross sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately 1.510101.5 \cdot 10^{10}/(mm2^2 s) appears to be feasible by means of a radioactive 11^{11}C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 101010^{10} antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure-of-merit by a factor of about ten.Comment: 13 pages, 8 figures; v2: minor language and signification corrections v3: (14 pages, 12 figures) major error, nonapplicable polarisation transfer cross sections replaced by the mandatory spin-flip cross section

    Technical enhancement of TMA sites for data safety & cost efficiency

    Get PDF
    Current developments of deep sea data telemetry system (capsules, inductive, acoustics) will be reviewed and further developments performed. Technical enhancement will be demonstrated at selected sites and with different platforms (e.g. Myrtle-X lander

    On-orbit Operations and Offline Data Processing of CALET onboard the ISS

    Get PDF
    The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of approximately 84%. Nearly 450 million events are collected with a high-energy (E>10 GeV) trigger. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.Comment: 11 pages, 7 figures, published online 27 February 201

    Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET

    Get PDF
    We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET}) observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes gamma-rays from 1\sim1 GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views \sim3 sr and 2π\sim2\pi sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {\sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049105310^{49}\sim10^{53} erg s1^{-1} in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {\sl CALET} for gamma-ray transient events which is the order of 10710^{-7}~erg\,cm2^{-2}\,s1^{-1} for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in Astrophysical Journa

    Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser

    Full text link
    The electromagnetic radiation generated by ultra-relativistic positrons channelling in a crystalline undulator is discussed. The crystalline undulator is a crystal whose planes are bent periodically with the amplitude much larger than the interplanar spacing. Various conditions and criteria to be fulfilled for the crystalline undulator operation are established. Different methods of the crystal bending are described. We present the results of numeric calculations of spectral distributions of the spontaneous radiation emitted in the crystalline undulator and discuss the possibility to create the stimulated emission in such a system in analogy with the free electron laser. A careful literature survey covering the formulation of all essential ideas in this field is given. Our investigation shows that the proposed mechanism provides an efficient source for high energy photons, which is worth to study experimentally.Comment: 52 pages, MikTeX, 14 figure

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
    corecore