204 research outputs found

    Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    Get PDF
    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed

    Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    Get PDF
    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCI, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approximately 17-47 km) altitude range and over 10 degree latitude bins from 70 deg S to 70 deg N. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and CIONO2; (2) from the N2O-NOy correlation, (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approximately 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed

    TB Hackathon: Development and Comparison of Five Models to Predict Subnational Tuberculosis Prevalence in Pakistan

    Get PDF
    Pakistan’s national tuberculosis control programme (NTP) is among the many programmes worldwide that value the importance of subnational tuberculosis (TB) burden estimates to support disease control efforts, but do not have reliable estimates. A hackathon was thus organised to solicit the development and comparison of several models for small area estimation of TB. The TB hackathon was launched in April 2019. Participating teams were requested to produce district-level estimates of bacteriologically positive TB prevalence among adults (over 15 years of age) for 2018. The NTP provided case-based data from their 2010–2011 TB prevalence survey, along with data relating to TB screening, testing and treatment for the period between 2010–2011 and 2018. Five teams submitted district-level TB prevalence estimates, methodological details and programming code. Although the geographical distribution of TB prevalence varied considerably across models, we identified several districts with consistently low notification-to-prevalence ratios. The hackathon highlighted the challenges of generating granular spatiotemporal TB prevalence forecasts based on a cross-sectional prevalence survey data and other data sources. Nevertheless, it provided a range of approaches to subnational disease modelling. The NTP’s use and plans for these outputs shows that, limitations notwithstanding, they can be valuable for programme planning

    Defining the research agenda to measure and reduce tuberculosis stigmas

    Get PDF
    This is an Open Access article, © 2017 International Union Against Tuberculosis and Lung Disease. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Crucial to finding and treating the 4 million tuberculosis (TB) patients currently missed by National TB Programs, TB stigma is receiving well-deserved and long-delayed attention at the global level. However, the ability to measure and evaluate the success of TB stigma reduction efforts is limited by the need for additional tools. At a 2016 TB stigma measurement meeting held in The Hague, stigma experts discussed and proposed a research agenda around four themes: (1) Drivers: What are the main drivers and domains of TB stigma(s)?; (2) Consequences: How consequential are TB stigmas? How are negative impacts most felt?; (3) Burden: What is the global prevalence and distribution of TB stigma(s)? What explains any variation? (4): Intervention: What can be done to reduce the extent and impact of TB stigma(s)? Each theme was further subdivided into research topics to be addressed to move the agenda forward. These include more clarity on what causes TB stigmas to emerge and thrive, the difficulty of measuring the complexity of stigma, and the improbability of a universal stigma ‘cure’. Notwithstanding, these challenges should not hinder investments in TB stigma measurement and reduction. We believe it is time to focus on how and not whether the global community should measure and reduce TB stigma.Peer reviewedFinal Published versio

    Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    Get PDF
    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology

    Social interaction patterns, therapist responsiveness, and outcome in treatments for borderline personality disorder.

    Get PDF
    Inflexible social interaction patterns are defining features of borderline personality disorder (BPD). Specific beliefs about the self and others may be activated across interaction situations, often leading to instable relationships. It may be pivotal to address these difficulties in early treatment phases, through appropriate therapist responsiveness, which means an adaptation of therapist's activity to their client's behaviours using emerging information in the process (Stiles, 2009, Clinical Psychology: Science and Practice, 16, 86). In this process-outcome study, responsiveness is operationalized by the motive-oriented therapeutic relationship (Caspar, 2007, Handbook of psychotherapeutic case formulations, 2nd ed., 251-289, Guilford), based on the Plan analysis case formulation. The present study assesses the interplay between social interaction problems and therapist responsiveness, explaining symptoms at discharge and the therapeutic alliance. In total, N = 50 clients with BPD entered the study, and standard and responsive treatments were compared. Social interaction patterns were assessed by the newly developed Borderline Interaction Patterns Scale (BIPS), applied to recorded material of three sessions per therapy. Outcome was measured by general symptoms (OQ-45), borderline symptoms (BSL-23), interpersonal problems (IIP), and the therapeutic alliance (WAI). Results suggest that in standard treatment, social interaction patterns are neither related to outcome nor the therapeutic alliance. In responsive treatment, more activation of social interaction patterns predicted better outcome on IIP and lower therapist ratings of the alliance. The conclusions seem promising for specific effectiveness of responsive treatments in particular in the interpersonal problem area of BPD. Identifying social interaction patterns early in treatment may be a crucial pathway to change for BPD. Responsive therapy activating social interaction patterns may be crucial for better outcome. Future research should focus on mechanisms of change in early treatment phases for BPD. New scale for assessing social interaction patterns specific to borderline personality disorder

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems

    Get PDF
    Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure

    A global inventory of stratospheric NOy from ACE-FTS

    Get PDF
    The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board the Canadian SCISAT-1 satellite (launched in August 2003) measures over 30 different atmospheric species, including six nitrogen trace gases that are needed to quantify the stratospheric NOy budget. We combine volume mixing ratio (VMR) profiles for NO, NO2, HNO3, N2O5, ClONO2, and HNO4 to determine a zonally averaged NOy climatology on monthly and 3 month combined means (December–February, March–May, June–August, and September–November) at 5° latitude spacing and on 33 pressure surfaces. Peak NOy VMR concentrations (15–20 ppbv) are situated at about 3 hPa (∼40 km) in the tropics, while they are typically lower at about 10 hPa (∼30 km) in the midlatitudes. Mean NOy VMRs are similar in both the northern and southern polar regions, with the exception of large enhancements periodically observed in the upper stratosphere and lower mesosphere. These are primarily due to enhancements of NO due to energetic particle precipitation and downward transport. Other features in the NOy budget are related to descent in the polar vortex, heterogeneous chemistry, and denitrification processes. Comparison of the ACE-FTS NOy budget is made to both the Odin and ATMOS NOy data sets, showing in both cases a good level of agreement, such that relative differences are typically better than 20%. The NOy climatological products are available through the ACE website and are a supplement to the paper. - A middle-atmosphere NOy climatology has been produced using ACE-FTS measurements; - A robust method for quality controlling the input data has been developed - Good agreement is found between ACE-FTS NOy climatology and other climatologie
    corecore