Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

Abstract

We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed

    Similar works