87 research outputs found

    Prevention of stillbirths: impact of a two-stage screening for vasa previa

    Get PDF
    Objectives: To examine the feasibility and effectiveness of a two-stage ultrasound screening strategy for detection of vasa previa and estimate the potential impact of screening on prevention of stillbirth. Methods: This was a retrospective examination of data from prospective screening for vasa previa in singleton pregnancies undertaken at the Fetal Medicine Centre at Medway Maritime Hospital, UK between 2012 and 2018. Women booked for prenatal care and delivery in our hospital had routine ultrasound examinations at 11-13 and 20-22 weeks’ gestation. Those with velamentous cord insertion at the inferior part of the placenta at the first-trimester scan and those with low-lying placenta at the second-trimester scan were classified as high-risk for vasa previa and had transvaginal sonography specifically searching for vasa previa at the time of the 20-22 weeks scan. The management and outcome of cases with suspected vasa previa is described. We excluded cases of miscarriage or termination at <24 weeks’ gestation. Results: The study population of 26,830 singleton pregnancies, included 21 (0.08% or 1 in 1,278) with vasa previa. In all cases of vasa previa the diagnosis was made at the 20-22 weeks scan and confirmed by gross and histological examination of the placenta postnatally. At the 11-13 weeks scan the cord insertion was classified as central in 25,071 (93.4%) cases, marginal in 1,680 (6.3%), and velamentous in 79 (0.3%). In 16 (76.2%) of the 21 cases of vasa previa, the cord insertion at the first-trimester scan was classified as velamentous at the inferior part of the placenta, in 2 (9.5%) as marginal and in 3 (14.3%) as central. The 21 cases of vasa previa were managed on an outpatient basis with serial scans for measurement of cervical length and elective cesarean section at 34 weeks’ gestation; all babies were liveborn but there was one neonatal death. In the study population there were 83 stillbirths and postnatal examination showed no evidence of vasa previa in any of the cases. On the assumption that if we had not diagnosed prenatally all 21 cases of vasa previa in our population half of these cases would have resulted in stillbirth, then the potential impact of screening is prevention of 9.6% (10/104) of stillbirths. Conclusion: A two-stage strategy of screening for vasa previa can be incorporated into routine clinical practice and such strategy could potentially reduce the rate of stillbirth

    Modern sediment records of hydroclimatic extremes and associated potential contaminant mobilization in semi-arid environments : lessons learnt from recent flood-drought cycles in southern Botswana

    Get PDF
    Open access via the Springer Compact Agreement This research was funded by the UK Natural Environment Research Council NERC Urgency grant NE/R002568/1 (PULA Project). Acknowledgments The authors would like to thank the Editor and two anonymous reviewers for their comments and suggestions which have contributed to improve the quality of this paper. The authors would like to thank all the BIUST students that took part in one or more field campaigns in the Notwane river catchment; their work and interests were remarkable. Thanks are due to Trust Manyiwa (BIUST) for the assistance with grain size and OM analyses and to Serwalo M. Mokgosi (BIUST) for assistance with the MP-AES measurements of sediment materials. We would like to thank the staff at the University of Aberdeen laboratory (Michael McGibbon) for assistance with the water quality analyses.Peer reviewedPublisher PD

    Occurrence and Treatment of Bone Atrophic Non-Unions Investigated by an Integrative Approach

    Get PDF
    Recently developed atrophic non-union models are a good representation of the clinical situation in which many nonunions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures

    Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Get PDF
    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery

    Data-driven reverse engineering of signaling pathways using ensembles of dynamic models

    Get PDF
    Signaling pathways play a key role in complex diseases such as cancer, for which the development of novel therapies is a difficult, expensive and laborious task. Computational models that can predict the effect of a new combination of drugs without having to test it experimentally can help in accelerating this process. In particular, network-based dynamic models of these pathways hold promise to both understand and predict the effect of therapeutics. However, their use is currently hampered by limitations in our knowledge of the underlying biochemistry, as well as in the experimental and computational technologies used for calibrating the models. Thus, the results from such models need to be carefully interpreted and used in order to avoid biased predictions. Here we present a procedure that deals with this uncertainty by using experimental data to build an ensemble of dynamic models. The method incorporates steps to reduce overfitting and maximize predictive capability. We find that by combining the outputs of individual models in an ensemble it is possible to obtain a more robust prediction. We report results obtained with this method, which we call SELDOM (enSEmbLe of Dynamic lOgic-based Models), showing that it improves the predictions previously reported for several challenging problems.JRB and DH acknowledge funding from the EU FP7 project NICHE (ITN Grant number 289384). JRB acknowledges funding from the Spanish MINECO project SYNBIOFACTORY (grant number DPI2014-55276-C5-2-R). AFV acknowledges funding from the Galician government (Xunta de Galiza) through the I2C postdoctoral fellowship ED481B2014/133-0. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Relating the Chondrocyte Gene Network to Growth Plate Morphology: From Genes to Phenotype

    Get PDF
    During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography.

    Full text link
    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 mum scale, no change was observed in the intracortical structure. At 1 mum scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging
    • 

    corecore