539 research outputs found

    Elemental abundances of low-mass stars in the young clusters 25 Ori and lambda Ori

    Full text link
    Aims. We aim to derive the chemical pattern of the young clusters 25 Orionis and lambda Orionis through homogeneous and accurate measurements of elemental abundances. Methods. We present FLAMES/UVES observations of a sample of 14 K-type targets in the 25 Ori and lambda Ori clusters; we measure their radial velocities, in order to confirm cluster membership. We derive stellar parameters and abundances of Fe, Na, Al, Si, Ca, Ti, and Ni using the code MOOG. Results. All the 25 Ori stars are confirmed cluster members without evidence of binarity; in lambda Ori we identify one non-member and one candidate single-lined binary star. We find an average metallicity [Fe/H]=-0.05+/-0.05 for 25 Ori, where the error is the 1sigma standard deviation from the average. lambda Ori members have a mean iron abundance value of 0.01+/-0.01. The other elements show close-to-solar ratios and no star-to-star dispersion. Conclusions. Our results, along with previous metallicity determinations in the Orion complex, evidence a small but detectable dispersion in the [Fe/H] distribution of the complex. This appears to be compatible with large-scale star formation episodes and initial non-uniformity in the pre-cloud medium. We show that, as expected, the abundance distribution of star forming regions is consistent with the chemical pattern of the Galactic thin disk.Comment: Accepted by Astronomy and Astrophysics. 14 pages, 10 figures, 7 table

    Chemical composition of the Taurus-Auriga association

    Full text link
    The Taurus-Auriga association is perhaps the most famous prototype of a low-mass star forming region, surveyed at almost all wavelengths. Unfortunately, like several other young clusters/associations, this T association lacks an extensive abundance analysis determination. We present a high-resolution spectroscopic study of seven low-mass members of Taurus-Auriga, including both weak-lined and classical T Tauri stars designed to help robustly determine their metallicity. After correcting for spectral veiling, we performed equivalent width and spectral synthesis analyses using the GAIA set of model atmospheres and the 2002 version of the code MOOG. We find a solar metallicity, obtaining a mean value of [Fe/H]=0.01±-0.01\pm0.05. The α\alpha-element Si and the Fe-peak one Ni confirm a solar composition. Our work shows that the dispersion among members is well within the observational errors at variance with previous claims. As in other star forming regions, no metal-rich members are found, reinforcing the idea that old planet-host stars form in the inner part of the Galactic disc and subsequently migrate.Comment: In press on A\&

    Mechanism of thermally activated c-axis dissipation in layered High-Tc_c superconductors at high fields

    Full text link
    We propose a simple model which explains experimental behavior of cc-axis resistivity in layered High-Tc_c superconductors at high fields in a limited temperature range. It is generally accepted that the in-plane dissipation at low temperatures is caused by small concentration of mobile pancake vortices whose diffusive motion is thermally activated. We demonstrate that in such situation a finite conductivity appears also in cc-direction due to the phase slips between the planes caused by the mobile pancakes. The model gives universal relation between the components of conductivity which is in good agreement with experimental data.Comment: RevTeX, 4 pages, 2 Postscript figure

    Quark-Mass Dependence of Elastic πK Scattering from QCD

    Get PDF
    We present a determination of the isospin-1/2 elastic πK scattering amplitudes in S and P partial waves using lattice quantum chromodynamics. The amplitudes, constrained for a large number of real-valued energy points, are obtained as a function of light-quark mass, corresponding to four pion masses between 200 and 400 MeV, at a single lattice spacing. Below the first inelastic threshold, the P-wave scattering amplitude is dominated by a single pole singularity that evolves from being a stable bound state at the highest quark mass into a narrow resonance that broadens as the pion and kaon masses are reduced. As in experiment, the S-wave amplitude does not exhibit an obviously resonant behavior, but instead shows a slow rise from threshold, which is not inconsistent with the presence of a K/K*0(700)-like resonance at the considered quark masses. As has been found in analyses of experimental scattering data, simple analytic continuations into the complex energy plane of precisely determined lattice QCD amplitudes on the real energy axis are not sufficient to model-independently determine the existence and properties of this state. The spectra and amplitudes we present will serve as an input for increasingly elaborate amplitude analysis techniques that implement more of the analytic structure expected at complex energies

    Chemical pattern across the young associations ONC and OB1b

    Full text link
    Context. Abundances of iron-peak and alpha-elements are poorly known in Orion, and the available measurements yield contradictory results. Aims. We measure accurate and homogeneous elemental abundances of the Orion subgroups ONC and OB1b, and search for abundance differences across the Orion complex. Methods. We present FLAMES/UVES spectroscopic observations of 20 members of the ONC and OB1b. We measured radial velocity, veiling, effective temperature using two spectroscopic methods, and determined the chemical abundances of Fe, Na, Al, Si, Ca, Ti, and Ni using the code MOOG. We also performed a new consistent analysis of spectra previously analyzed by our group. Results. We find three new binaries in the ONC, two in OB1b, and three non-members in OB1b (two of them most likely being OB1a/25 Ori members). Veiling only affects one target in the ONC, and the effective temperatures derived using two spectroscopic techniques agree within the errors. The ONC and OB1b are characterized by a small scatter in iron abundance, with mean [Fe/H] values of -0.11+/-0.08 and -0.05+/-0.05, respectively. We find a small scatter in all the other elemental abundances. We confirm that P1455 is a metal-rich star in the ONC. Conclusions. We conclude that the Orion metallicity is not above the solar value. The OB1b group might be slightly more metal-rich than the ONC; on the other hand, the two subgroups have similar almost solar abundances of iron-peak and alpha-elements with a high degree of homogeneity.Comment: Accepted by Astronomy and Astrophysics. 16 figures, 8 table

    A U-band survey of brown dwarfs in the Taurus Molecular Cloud with the XMM-Newton Optical/UV Monitor

    Get PDF
    We aim to characterize the U-band variability of young brown dwarfs in the Taurus Molecular Cloud and discuss its origin. We used the XMM-Newton Extended Survey of the Taurus Molecular Cloud, where a sample of 11 young bona fide brown dwarfs (spectral type later than M6) were observed simultaneously in X-rays with XMM-Newton and in the U-band with the XMM-Newton Optical/UV Monitor (OM). We obtained upper limits to the U-band emission of 10 brown dwarfs (U>19.6-20.6 mag), whereas 2MASSJ04141188+2811535 was detected in the U-band. Remarkably, the magnitude of this brown dwarf increased regularly from U~19.5 mag at the beginning of the observation, peaked 6h later at U~18.4 mag, and then decreased to U~18.65 mag in the next 2h. The first OM U-band measurement is consistent with the quiescent level observed about one year later thanks to ground follow-up observations. This brown dwarf was not detected in X-rays by XMM-Newton during the OM observation. We discuss the possible sources of U-band variability for this young brown dwarf, namely a magnetic flare, non-steady accretion onto the substellar surface, and rotational modulation of a hot spot. We conclude that this event is related to accretion from a circumsubstellar disk, where the mass accretion rate was about a factor of 3 higher than during the quiescent level.Comment: 6 pages and 4 Figures. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST

    X-ray emission from the young brown dwarfs of the Taurus Molecular Cloud

    Get PDF
    The XMM-Newton Extended Survey of the TMC (XEST) is a large program designed to systematically investigate the X-ray properties of young stellar/substellar objects in the TMC. In particular, the area surveyed by 15 XMM-Newton pointings (of which three are archival observations), supplemented with one archival Chandra observation, allows us to study 17 BDs with M spectral types. Half of this sample (9 out of 17 BDs) is detected; 7 BDs are detected here for the first time in X-rays. We observed a flare from one BD. We confirm several previous findings on BD X-ray activity: a log-log relation between X-ray and bolometric luminosity for stars (with L*<10 Lsun) and BDs detected in X-rays; a shallow log-log relation between X-ray fractional luminosity and mass; a log-log relation between X-ray fractional luminosity and effective temperature; a log-log relation between X-ray surface flux and effective temperature. We find no significant log-log correlation between the X-ray fractional luminosity and EW(Halpha). Accreting and nonaccreting BDs have a similar X-ray fractional luminosity. The median X-ray fractional luminosity of nonaccreting BDs is about 4 times lower than the mean saturation value for rapidly rotating low-mass field stars. Our TMC BDs have higher X-ray fractional luminosity than BDs in the Chandra Orion Ultradeep Project. The X-ray fractional luminosity declines from low-mass stars to M-type BDs, and as a sample, the BDs are less efficient X-ray emitters than low-mass stars. We thus conclude that while the BD atmospheres observed here are mostly warm enough to sustain coronal activity, a trend is seen that may indicate its gradual decline due to the drop in photospheric ionization degree (abridged).Comment: 20 pages and 19 Figures. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST). Preprint with higher resolution figures is available at http://hal.ccsd.cnrs.fr/ccsd-0009049

    The Disk Population of the Taurus Star-Forming Region

    Full text link
    We have analyzed nearly all images of the Taurus star-forming region at 3.6-24um that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg^2) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources. We have classified the members of Taurus according to whether they show evidence of disks and envelopes (classes I, II, and III). The disk fraction in Taurus is 75% for solar-mass stars and declines to 45% for low-mass stars and brown dwarfs (0.01-0.3 M_sun). This dependence on stellar mass is similar to that measured for Cha I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 vs. 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (20%) in IC 348 and Sigma Ori, which are denser than Taurus and Cha I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in regions that have lower stellar densities. Through an analysis of multiple epochs of photometry that are available for ~200 Taurus members, we find that stars with disks exhibit significantly greater mid-IR variability than diskless stars. Finally, we have used our data in Taurus to refine the criteria for primordial, evolved, and transitional disks. The number ratio of evolved and transitional disks to primordial disks in Taurus is 15/98 for K5-M5, indicating a timescale of 0.15 x tau(primordial)=0.45 Myr for the clearing of the inner regions of optically thick disks. After applying the same criteria to older clusters (2-10 Myr), we find that the proportions of evolved and transitional disks in those populations are consistent with the measurements in Taurus when their star formation histories are properly taken into account. ERRATUM: In Table 7, we inadvertently omitted the spectral type bins in which class II sources were placed in Table 8 based on their bolometric luminosities (applies only to stars that lack spectroscopic classifications). The bins were K6-M3.5 for FT Tau, DK Tau B, and IRAS 04370+2559, M3.5-M6 for IRAS 04200+2759, IT Tau B, and ITG 1, and M6-M8 for IRAS 04325+2402 C. In addition, the values of K_s-[3.6] in Table 13 and Figure 26 for spectral types of M4-M9 are incorrect. We present corrected versions of Table 13 and Figure 26.Comment: revised version with Erratum (in press
    corecore