73 research outputs found

    A new borehole wire extensometer with high accuracy and stability for observation of local geodynamic processes

    Get PDF
    Very stable and reliable instruments with high accuracy are required in field measurements for continuous monitoring local geodynamic processes, such as tectonic movements, ground motions in landslide prone areas, etc. A sensitive borehole wire extensometer with low energy consumption was developed in the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences to observe very small vertical movements (in the order of a few millimeters) of the upper layer of the soil due to hydrological, meteorological and biological processes. The newly developed instrument eliminates the disadvantages of the borehole wire extensometers which are presently used. Its sensitivity and stability are much higher than these parameters of the previous instruments. The instrument is able to measure distance variations without instrumental drift in a range of 0–4 mm with a resolution of better than 1 μm. Since the effect of the yearly temperature variations can be easily removed from the extensometric data record, the compensation for the short-periodic (daily) thermal effects on the instrument was of high priority during the design of the instrument. This paper describes the construction and calibration of the extensometer. The extensometer was installed for monitoring vertical ground movements due to hydro-meteorological processes on the high loess wall of the Danube River at Dunaföldvár, Hungary. The efficiency of the temperature compensation of the instrument was investigated in detail on the basis of the measured data series. © 2012 American Institute of Physic

    Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management

    Get PDF
    Breeding programs for endangered species increasingly use molecular genetics to inform their management strategies. Molecular approaches can be useful for investigating relatedness, resolving pedigree uncertainties, and for estimating genetic diversity in captive and wild populations. Genetic data can also be used to evaluate the representation of wild population genomes within captive population gene-pools. Maintaining a captive population that is genetically representative of its wild counterpart offers a means of conserving the original evolutionary potential of a species. Okapi, an even-toed ungulate, endemic to the Democratic Republic of Congo, have recently been reclassified as Endangered by the IUCN. We carried out a genetic assessment of the ex-situ okapi (Okapia johnstoni) population, alongside an investigation into the genetic structure of wild populations across their geographic range. We found that while levels of nuclear (12 microsatellite loci) genetic variation in the wild, founder and captive okapi populations were similar, mitochondrial (833 bp of Cyt b, CR, tRNA-Thr and tRNA-Pro) variation within captive okapi was considerably reduced compared to the wild, with 16 % lower haplotype diversity. Further, both nuclear and mitochondrial alleles present in captivity provided only partial representation of those present in the wild. Thirty mitochondrial haplotypes found in the wild were not found in captivity, and two haplotypes found in captivity were not found in the wild, and the patterns of genetic variation at microsatellite loci in our captive samples were considerably different to those of the wild samples. Our study highlights the importance of genetic characterisation of captive populations, even for well-managed ex-situ breeding programs with detailed studbooks. We recommend that the captive US population should be further genetically characterised to guide management of translocations between European and US captive population

    An Agenda for Open Science in Communication

    Get PDF
    In the last 10 years, many canonical findings in the social sciences appear unreliable. This so-called “replication crisis” has spurred calls for open science practices, which aim to increase the reproducibility, replicability, and generalizability of findings. Communication research is subject to many of the same challenges that have caused low replicability in other fields. As a result, we propose an agenda for adopting open science practices in Communication, which includes the following seven suggestions: (1) publish materials, data, and code; (2) preregister studies and submit registered reports; (3) conduct replications; (4) collaborate; (5) foster open science skills; (6) implement Transparency and Openness Promotion Guidelines; and (7) incentivize open science practices. Although in our agenda we focus mostly on quantitative research, we also reflect on open science practices relevant to qualitative research. We conclude by discussing potential objections and concerns associated with open science practices

    The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    Get PDF
    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 6060^\circ, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.Comment: 20 pages, 14 figure

    Differences between Pygmy and Non-Pygmy hunting in Congo Basin forests

    Get PDF
    We use data on game harvest from 60 Pygmy and non-Pygmy settlements in the Congo Basin forests to examine whether hunting patterns and prey profiles differ between the two hunter groups. For each group, we calculate hunted animal numbers and biomass available per inhabitant, P, per year (harvest rates) and killed per hunter, H, per year (extraction rates). We assess the impact of hunting of both hunter groups from estimates of numbers and biomass of prey species killed per square kilometre, and by examining the proportion of hunted taxa of low, medium and high population growth rates as a measure of their vulnerability to overhunting. We then map harvested biomass (kg-1P-1Yr-1) of bushmeat by Pygmies and non-Pygmies throughout the Congo Basin. Hunting patterns differ between Pygmies and non-Pygmies; Pygmies take larger and different prey and non-Pygmies sell more for profit. We show that non-Pygmies have a potentially more severe impact on prey populations than Pygmies. This is because non-Pygmies hunt a wider range of species, and twice as many animals are taken per square kilometre. Moreover, in non-Pygmy settlements there was a larger proportion of game taken of low population growth rate. Our harvest map shows that the non-Pygmy population may be responsible for 27 times more animals harvested than the Pygmy population. Such differences indicate that the intense competition that may arise from the more widespread commercial hunting by non-Pygmies is a far more important constraint and source of conflict than are protected areas

    Studies of in Situ Pore Pressure Fluctuations At Various Scales Études des fluctuations in situ de la pression de pore à différentes échelles

    No full text
    Pore pressure fluctuations in fluid saturated geological formations, either of natural or anthropogenic origin, can be observed at different scales. Natural fluctuations, e. g. , due to tidal, barometric or seismogenic forcing, or man-made effects as through use of underground fluid reservoirs, or initial filling and cyclic loading of lake reservoirs may have wavelengths from meters to kilometers. In situ monitoring of processes, in which both rock deformation and pore pressure changes are significant, improves our knowledge on the mechanical behaviour and the role of pore pressure in porous rocks and sedimentary layers. Pressure transducers for continuous recording of fluid level variations in wells, reflecting pore pressure changes at depth, or borehole tiltmeters that are sensitive to ground deformation caused by gradients of pore pressure fluctuations are relatively simple means to trace the dynamics of such rock-fluid interactions. The obtained data series are usually interpreted in two ways: by application of analytical solutions-adopting homogeneous poroelastic conditions or single fracture models in a uniform, elastic medium-and by simulation through numerical calculations allowing for some heterogeneity in the model volume. Field cases presented in this article include tilt measurements in the vicinity of pumped wells (1 to 100 m scale), fluid level monitoring in wells (borehole scale), and studies of pore pressure effects induced by seismic events (1 to 100 km scale). Specific rock parameters that can be constrained are the Skempton ratio, the hydraulic diffusivity, and the type of the effective rheology. In cases of tiltmeter studies, anisotropy of pore fluid flow can also be detected. Keywords: fluids in rocks, pore pressure, poroelasticity, hydrology. Les fluctuations de la pression de pore dans les formations géologiques saturées en fluides, d'origine naturelle ou anthropogéniques, peuvent être observées à différentes échelles. Les fluctuations naturelles, par exemple celles d'origine sismique, barométrique ou marémotrice, ainsi que les effets provoqués par l'exploitation de réservoirs de fluides souterrains par l'homme, ou encore les chargements initiaux et cycliques de lacs servant de réservoirs, peuvent avoir des longueurs d'ondes allant du mètre au kilomètre. Le contrôle in situ des processus, pour lesquels la déformation de la roche ainsi que les variations de pression sont significatives, améliore notre connaissance sur la réaction mécanique et sur le rôle de la pression de pore dans les roches poreuses et les couches sédimentaires. Les capteurs de pression pour un enregistrement continu des variations du niveau de fluide dans les puits (reflétant les changements de pression en profondeur) ou les inclinomètres de puits, sensibles à la déformation du sol causée par des gradients de variations de pression de pore, constituent des moyens relativement simples permettant de suivre les dynamiques de telles interactions roches-fluides. Les données obtenues sont généralement interprétées de deux manières différentes : par l'utilisation de solutions analytiques - avec des conditions poroélastiques homogènes ou des modèles de fracture unique en milieu élastique homogène - et par la simulation numérique qui permet de prendre en compte, dans le modèle, certaines hétérogénéités. Les cas de gisements présentés dans cet article incluent des mesures inclinométriques proches des puits de pompage (échelle allant de 1 à 100 m), des contrôles du niveau de fluide dans les puits profonds (échelle du puits) et des études sur les variations de la pression de pore d'origine sismique (échelle allant de 1 à 100 km). Les paramètres caractéristiques des roches qui peuvent être soumis à des contraintes sont le coefficient de Skempton, la diffusivité hydraulique et le type de la rhéologie effective. Dans le cas des mesures d'inclinométrie, l'anisotropie d'écoulement du fluide peut également être détectée

    Studies of in Situ Pore Pressure Fluctuations At Various Scales

    No full text
    Pore pressure fluctuations in fluid saturated geological formations, either of natural or anthropogenic origin, can be observed at different scales. Natural fluctuations, e. g. , due to tidal, barometric or seismogenic forcing, or man-made effects as through use of underground fluid reservoirs, or initial filling and cyclic loading of lake reservoirs may have wavelengths from meters to kilometers. In situ monitoring of processes, in which both rock deformation and pore pressure changes are significant, improves our knowledge on the mechanical behaviour and the role of pore pressure in porous rocks and sedimentary layers. Pressure transducers for continuous recording of fluid level variations in wells, reflecting pore pressure changes at depth, or borehole tiltmeters that are sensitive to ground deformation caused by gradients of pore pressure fluctuations are relatively simple means to trace the dynamics of such rock-fluid interactions. The obtained data series are usually interpreted in two ways: by application of analytical solutions-adopting homogeneous poroelastic conditions or single fracture models in a uniform, elastic medium-and by simulation through numerical calculations allowing for some heterogeneity in the model volume. Field cases presented in this article include tilt measurements in the vicinity of pumped wells (1 to 100 m scale), fluid level monitoring in wells (borehole scale), and studies of pore pressure effects induced by seismic events (1 to 100 km scale). Specific rock parameters that can be constrained are the Skempton ratio, the hydraulic diffusivity, and the type of the effective rheology. In cases of tiltmeter studies, anisotropy of pore fluid flow can also be detected. Keywords: fluids in rocks, pore pressure, poroelasticity, hydrology
    corecore