304 research outputs found

    Using a Flow Through device to reconstruct the thermal gradient in the water column based on G. inflata Mg/Ca

    Get PDF
    We present Mg/Ca analyses performed via a Flow Through sequential dissolution device connected to an ICP-OES on the planktonic foraminifer Globorotalia inflata. The aim of the study is to explore the possibility to reconstruct the thermal gradient in the water column by separating non-crusted and crusted calcite phases in the tests of G. inflata using the difference between their Mg/Ca ratios as a measure of the thermal gradient. An important assumption is that the non-crusted part of the tests is calcified in shallow, warmer water than the crusted part. For analyses a range of different preparation steps were used to determine the ideal way of separating the phases. Foraminifer tests were (not) cleaned, (not) crushed, and (not) pulverized before online analysis with the FT device. To analyze samples with a FT device the foraminifer tests are placed on a filter with a mesh of 0.45 μm preventing clay minerals to wash through. A sequential dissolution protocol first rinses the samples with buffered Seralpur water before QD HNO3 is added in small steps to create a ramp of increasing acid strength. As acid is kept constant at each concentration for several minutes, dissolution of a specific calcite phase can take place. Initial results show that it is most effective to slightly crush the tests without applying standard cleaning procedures, but rather analyze them without cleaning. Samples were selected from the South Atlantic (core tops and specific downcore samples) and the Mediteterranean (plankton tows). All samples were chosen based on previous work on them to provide comparison with routinely analysed Mg/Ca ratios. The South Atlantic samples have been analyzed extensively as bulk samples separated in difference size fractions and crusted vs. non-crusted (Groeneveld and Chiessi). The Mediterranean samples were not only analyzed as bulk samples but also by Laser Ablation ICP-MS (von Raden et al.). Results show that bulk analyses are reliably reproduced by the FT method, especially for samples which are dominated by crusted calcite. Samples which were uncrusted often gave much higher Mg/Ca ratios than the bulk analyses. These higher Mg/Ca ratios mainly occur in the plankton tow samples and were also identified with Laser Ablation ICP-MS. A possible reason for this could be the presence of a high Mg amorphous calcite layer on the outside of foraminifer tests which have not completed their calcification yet as was recently also pointed out in several other studies. Identification of the crusted and uncrusted phases, and therewith a thermal gradient, seems to give the expected differences but a more rigorous statistical treatment is needed to pinpoint singular dissolution phases

    The influence of basaltic islands on the oceanic REE distribution: A case study from the tropical South Pacific

    Get PDF
    The Rare Earth Elements (REEs) have been widely used to investigate marine biogeochemical processes as well as the sources and mixing of water masses. However, there are still important uncertainties about the global aqueous REE cycle with respect to the contributions of highly reactive basaltic minerals originating from volcanic islands and the role of Submarine Groundwater Discharge (SGD). Here we present dissolved REE concentrations obtained from waters at the island-ocean interface (including SGD, river, lagoon and coastal waters) from the island of Tahiti and from three detailed open ocean profiles on the Manihiki Plateau (including neodymium (Nd) isotope compositions), which are located in ocean currents downstream of Tahiti. Tahitian fresh waters have highly variable REE concentrations that likely result from variable water–rock interaction and removal by secondary minerals. In contrast to studies on other islands, the SGD samples do not exhibit elevated REE concentrations but have distinctive REE distributions and Y/Ho ratios. The basaltic Tahitian rocks impart a REE pattern to the waters characterized by a middle REE enrichment, with a peak at europium similar to groundwaters and coastal waters of other volcanic islands in the Pacific. However, the basaltic island REE characteristics (with the exception of elevated Y/Ho ratios) are lost during transport to the Manihiki Plateau within surface waters that also exhibit highly radiogenic Nd isotope signatures. Our new data demonstrate that REE concentrations are enriched in Tahitian coastal water, but without multidimensional sampling, basaltic island Nd flux estimates range over orders of magnitude from relatively small to globally significant. Antarctic Intermediate Water (AAIW) loses its characteristic Nd isotopic signature (-6 to-9) around the Manihiki Plateau as a consequence of mixing with South Equatorial Pacific Intermediate Water (SEqPIW), which shows more positive values (-1 to -2). However, an additional Nd input/exchange along the pathway of AAIW, eventually originating from the volcanic Society, Tuamotu and Tubuai Islands (including Tahiti), is indicated by an offset from the mixing array of AAIW and SEqPIW to more radiogenic Nd isotope compositions

    Shallow Gas Hydrate Accumulations at a Nigerian Deepwater Pockmark—Quantities and Dynamics

    Get PDF
    The evolution of submarine pockmarks is often related to the ascent of fluid from the subsurface. For pockmarks located within the gas hydrate stability zone, methane oversaturation can result in the formation of gas hydrates in the sediment. An ~600 m‐wide sea floor depression in deep waters offshore Nigeria, Pockmark A, was investigated for distributions and quantities of shallow gas hydrates, origins of hydrocarbons, and time elapsed since the last major fluid ascent event. For the first time, pressure coring of shallow sediments and drilling of more than 50 m‐long cores with the sea floor drill rig MARUM‐MeBo70 were conducted in this pockmark. Unusually, high hydrate saturations of up to 51% of pore volume in the uppermost 2.5 m of sediment in the pockmark center substantiate that deepwater pockmarks are a relevant methane reservoir. Molecular and stable C and H isotopic compositions suggest that thermogenic hydrocarbons and secondary microbial methane resulting from petroleum biodegradation are injected into shallower sediments and mixed with primary microbial hydrocarbons. Two independent pore water chloride and sulfate modeling approaches suggest that a major methane migration event occurred during the past one to three centuries. A rough sea floor topography within the pockmark most likely results from combined sediment removal through ascending gas bubbles, hydrate clogging and deflection of migration pathways, gas pressure build‐up, and hydrate sea floor detachment. This study shows for the first time the chronological interrelationship between gas migration events, hydrate formation, and sea floor shaping in a deep sea pockmark

    The North Atlantic Waveguide and Downstream Impact Experiment

    Get PDF
    The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1

    Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere

    Get PDF
    Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth’s carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445–8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere

    Modellierung geochemischer Prozesseim Sickerwasser und Grundwasser : Beispiel: Die Pyritverwitterung unddas Problem saurer Grubenwässer

    No full text
    Thermodynamic equilibrium models represent an important tool for the description of geochemical processes in natural ground and seepage water systems.In part I of the thesis, interpretation methods are presented and discussed at the example of data from different geochemical environments. Furthermore, the effects of analysis and calculation errors are critically assessed using sensitivity analyses. The investigations show that in natural systems, often kinetic equilibria rather than thermodynamic equilibria have to be assumed. Therefore, the model KINEQ was developed and calculations for a given set of up to three minerals approaching a kinetic equilibrium are presented and compared to the results for natural systems.In part II, labratory experiments and model considerations on the geochemical and kinetic processes accompanied with the formation of acid mine drainage are presented. In column experiments with quartz sand containing 2% pyrite and calcite, feldspar and kaolinite, pyrite weathering rates and the buffering effect of different minerals were investigated. The pH-dependency of pyrite dissolution rates was determined in microbiologically controlled column experiments. Microbially mediated pyrite weathering was found to have a maximum at pH 2-3with dissolution rates in the order of 10**-9 mol· m**-2·s**-1.

    Pyrex 10.10 Model of pyrite oxidation on shelves over the Quaternary

    No full text
    This worksheet comprises a forward model of pyrite oxidation on exposed shelves over the Quaternary. Assuming the acid generated by pyrite oxidation during glacial exposure of shelves is fully buffered by carbonate dissolution, it calculates the oxygen consumption and CO2 release forced by this process. As the length of interglacials is not long enough to fully restock the pyrite reservoir (= "acid capacitor"), pyrite is gradually leached from the shelf along a descending pyrite oxidation front. This way, CO2 release by this process is increasingly retarded throughout the Quaternary to occur at ever-lower sea level. File 5: model worksheet including the code which is implemented in Excel. We recommend using Excel 2003 for Windows to run the model File 6: animiated view of a model run (MP4 file) File 7: Result of the reference model run in Koelling et al (2019
    corecore