328 research outputs found

    Enhancing innovation in organization by management control systems

    Get PDF
    Innovation is vital to organization’s success in today’s highly competitive and constantly changing business environment. Organizations need to drive value creating activities to be able to guarantee their long-term success and improve performance. This increasing need for change and growth provides a great deal of opportunity and many possibilities for businesses to renew themselves. However, innovation is a complex phenomenon, that involves high degree of uncertainty, high investments, and long-term approach. This has created a need for organizations to establish procedures that enable to control their processes and ensure the efficient use of their limited resources, balancing between the need for control and need to remain flexible and creative. Hence, the characteristics of management control systems and their suitability for innovation has raised an interest of organizational participants and researchers. This thesis aims to explore how management control systems can enhance innovation in organization. This study is based on the assumption that management control systems support innovation in organizational set-up and controls applied to innovation may have enabling and coercive design. Additionally, the use of management control systems is not limited to management but covers all organizational participants. Management control systems were studied as a package according to framework by Malmi & Brown (2008). This study was conducted as a qualitative study, having semi-structured interviews as chosen data collection method. Four interviews were carried out in one company´s innovation unit. The data gathered from interviews was analysed using thematic analysis. According to findings of this study organizations could benefit from comparing their management control systems to factors affecting their innovation management practises and balance the usage of enabling and coercive forms of control on them. Innovation is favouring the use of enabling control, but the balance is based on optimal fit. Management control systems applied to innovation should offer advanced visibility, communication, information sharing and collaboration, which are characteristics supported by enabling design of management control systems. The role of coercive controls is providing necessary limits to action and compliance. Management control systems package can also be applied to advance measuring innovation performance and generate metrics for assessing the value of innovation, which have been considered challenging tasks. This study’s empirical findings support the theoretical framework of this study at large extent. The results of this study should be reflected when considering how management control systems can enhance innovation in organization

    Arkit, bakteerit ja metaanin tuotto vaihtelevissa suoympäristöissä

    Get PDF
    Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.Methanogens are anaerobic Archaea with unique energy metabolism resulting in production of methane (CH4). In the atmosphere methane is an effective greenhouse gas. The largest natural sources of atmospheric methane are wetlands, including peat-forming mires. Methane emissions vary greatly between and within mires, depending on season and hydrological and botanical characteristics. The aim of this work was to elucidate the microbiology underlying the variation. Methanogens and potential methane production were assessed along spatial and temporal gradients of ecohydrology, season, ash fertilization, and peat depth in three Finnish boreal mires. Non-methanogenic Archaea and Bacteria were additionally addressed as potential substrate producers and competitors to methanogens. Characterization of microbial communities targeted the mcrA gene, essential in methane production, and archaeal or bacterial 16S ribosomal RNA gene. The communities were differentiated by analysis of clone libraries, denaturing gradient gel electrophoresis (DGGE), and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Methanogen communities and methane production changed markedly along an ecohydrological gradient from fen to bog, with changing vegetation and pH. The most acidic Sphagnum bog showed mainly Methanomicrobiales-associated, hydrogenotrophic Fen cluster methanogens, whereas the oligotrophic and mesotrophic fens with higher pH and sedge coverage had more diverse communities including acetoclastic methanogens. Season had a minor effect on the archaeal community in an acidic oligotrophic fen, but the temporal variation of methane production potential was substantial. Winter potential was unexpectedly high, and active methanogens were detected in winter peat. Ash fertilization, a forestry practice for promoting tree growth, had no substantial effects on methane production or methanogen communities in a drained bog, but the communities changed with peat depth. Comparison of three mcrA primer sets revealed that their coverage of methanogens from the drained bog was similar, but the quantitative representations of communities were primer-dependent. Bacterial and non-methanogenic archaeal groups detected in mires included Deltaproteobacteria, Acidobacteria, Verrucomicrobia, and Crenarchaeota of groups 1.1c and 1.3. Their detection forms a starting point for further studies to distinguish possible interactions with methanogens. Overall, the results indicate that methanogen community composition reflects chemical or botanical gradients that affect methane production, such as mire hydrology. Predictions of methane production in the spatially heterogeneous mires could thus benefit from characterization of methanogens and their ecophysiology

    Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition

    Get PDF
    Background: Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth (Arctia plantaginis) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. Results: After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. Conclusions: We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.Peer reviewe

    Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region

    Get PDF
    Peatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen-bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.Peer reviewe

    The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis

    Get PDF
    This is the post-print version of the final paper published in The Journal of Pain. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 The American Pain Society.Graded motor imagery (GMI) is becoming increasingly used in the treatment of chronic pain conditions. The objective of this systematic review was to synthesize all evidence concerning the effects of GMI and its constituent components on chronic pain. Systematic searches were conducted in 10 electronic databases. All randomized controlled trials (RCTs) of GMI, left/right judgment training, motor imagery, and mirror therapy used as a treatment for chronic pain were included. Methodological quality was assessed using the Cochrane risk of bias tool. Six RCTs met our inclusion criteria, and the methodological quality was generally low. No effect was seen for left/right judgment training, and conflicting results were found for motor imagery used as stand-alone techniques, but positive effects were observed for both mirror therapy and GMI. A meta-analysis of GMI versus usual physiotherapy care favored GMI in reducing pain (2 studies, n = 63; effect size, 1.06 [95% confidence interval, .41, 1.71]; heterogeneity, I2 = 15%). Our results suggest that GMI and mirror therapy alone may be effective, although this conclusion is based on limited evidence. Further rigorous studies are needed to investigate the effects of GMI and its components on a wider chronic pain population.NHMR

    Complex regional pain syndrome : The matter of white matter?

    Get PDF
    Introduction: Many central pathophysiological aspects of complex regional pain syndrome (CRPS) are still unknown. Although brain-imaging studies are increasingly supporting the contribution of the central nervous system to the generation and maintenance of the CRPS pain, the brain's white-matter alterations are seldom investigated. Methods: In this study, we used diffusion tensor imaging to explore white-matter changes in twelve CRPS-type-1 female patients suffering from chronic right upper-limb pain compared with twelve healthy control subjects. Results: Tract-based spatial-statistics analysis revealed significantly higher mean diffusivity, axial diffusivity, and radial diffusivity in the CRPS patients, suggesting that the structural connectivity is altered in CRPS. All these measures were altered in the genu, body, and splenium of corpus callosum, as well as in the left anterior and posterior and the right superior parts of the corona radiata. Axial diffusivity was significantly correlated with clinical motor symptoms at whole-brain level, supporting the physiological significance of the observed white-matter abnormalities. Conclusions: Altogether, our findings further corroborate the involvement of the central nervous system in CRPS.Peer reviewe

    Longitudinal evaluation of Tau-P301L transgenic mice reveals no cognitive impairments at 17 months of age.

    Get PDF
    INTRODUCTION: Tau is a microtubule-associated binding protein implicated in neurodegenerative tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD). These diseases result in the intracellular accumulation of hyperphosphorylated tau in the form of neurofibrillary tangles, the presence of which is associated with cognitive deficits. METHODS: We conducted a longitudinal behavioral study to provide a profile of the TgTau(P301L)23027 transgenic mouse in multiple cognitive domains across multiple ages. P301L is the tau mutation most frequently observed in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) and this mouse model recapitulates the progressive development of glial and neurofibrillary tangles, and associated cerebral atrophy observed in patients. We examined frontal cortex-dependent executive function and attention with the touchscreen 5-choice serial reaction time test (5-CSRTT) and assessed the function of temporal cortical structures using novel object recognition (OR). RESULTS: Despite using sensitive tasks, there were no apparent changes in executive function, attention, or recognition memory in the transgenic mice from 5 to 17 months of age. CONCLUSIONS: This study represents the first comprehensive longitudinal analysis of cognition in the TgTauP301L mouse model and suggests that this model is not ideal for studying early attention and recognition memory impairments associated with tauopathy. However, spatial and object recognition memory impairments were observed during follow-up assessments when the mice were 18 and 21 months, respectively. These impairments are consistent with previous publications, and with a dementia-like phenotype in these mice when aged

    Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease

    Full text link
    Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).In this paper, we propose an innovative approach to robustly and accurately detect Alzheimer's disease (AD) based on the distinction of specific atrophic patterns of anatomical structures such as hippocampus (HC) and entorhinal cortex (EC). The proposed method simultaneously performs segmentation and grading of structures to efficiently capture the anatomical alterations caused by AD. Known as SNIPE (Scoring by Non-local Image Patch Estimator), the novel proposed grading measure is based on a nonlocal patch-based frame-work and estimates the similarity of the patch surrounding the voxel under study with all the patches present in different training populations. In this study, the training library was composed of two populations: 50 cognitively normal subjects (CN) and 50 patients with AD, randomly selected from the ADNI database. During our experiments, the classification accuracy of patients (CN vs. AD) using several biomarkers was compared: HC and EC volumes, the grade of these structures and finally the combination of their volume and their grade. Tests were completed in a leave-one-out framework using discriminant analysis. First, we showed that biomarkers based on HC provide better classification accuracy than biomarkers based on EC. Second, we demonstrated that structure grading is a more powerful measure than structure volume to distinguish both populations with a classification accuracy of 90%. Finally, by adding the ages of subjects in order to better separate age-related structural changes from disease-related anatomical alterations, SNIPE obtained a classification accuracy of 93%Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Insti- tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation.Coupé, P.; Eskildsen, SF.; Manjón Herrera, JV.; Fonov, VS.; Collins, DL.; Alzheimer's Dis Neuroimaging (2012). Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease. NeuroImage. 59(4):3736-3747. https://doi.org/10.1016/j.neuroimage.2011.10.080S3736374759
    • …
    corecore