819 research outputs found

    Global existence and stability for second order functional evolution equations with infinite delay

    Get PDF
    In this article, the authors give sufficient conditions for existence and attractivity of mild solutions for second order semi-linear functional evolution equation in Banach spaces using Schauder's fixed point theorem. An example is provided to illustrate the result

    Cerebral venous sinus thrombosis in HIV-infected patients: Report of 2 cases

    Get PDF
    No Abstract

    Brain changes associated with cognitive and emotional factors in chronic pain : a systematic review

    Get PDF
    An emerging technique in chronic pain research is MRI, which has led to the understanding that chronic pain patients display brain structure and function alterations. Many of these altered brain regions and networks are not just involved in pain processing, but also in other sensory and particularly cognitive tasks. Therefore, the next step is to investigate the relation between brain alterations and pain related cognitive and emotional factors. This review aims at providing an overview of the existing literature on this subject. Pubmed, Web of Science and Embase were searched for original research reports. Twenty eight eligible papers were included, with information on the association of brain alterations with pain catastrophizing, fear-avoidance, anxiety and depressive symptoms. Methodological quality of eligible papers was checked by two independent researchers. Evidence on the direction of these associations is inconclusive. Pain catastrophizing is related to brain areas involved in pain processing, attention to pain, emotion and motor activity, and to reduced top-down pain inhibition. In contrast to pain catastrophizing, evidence on anxiety and depressive symptoms shows no clear association with brain characteristics. However, all included cognitive or emotional factors showed significant associations with resting state fMRI data, providing that even at rest the brain reserves a certain activity for these pain-related factors. Brain changes associated with illness perceptions, pain attention, attitudes and beliefs seem to receive less attention in literature. Significance: This review shows that maladaptive cognitive and emotional factors are associated with several brain regions involved in chronic pain. Targeting these factors in these patients might normalize specific brain alterations

    Spared nerve injury rats exhibit thermal hyperalgesia on an automated operant dynamic thermal escape Task

    Get PDF
    Well-established methods are available to measure thermal and mechanical sensitivity in awake behaving rats. However, they require experimenter manipulations and tend to emphasize reflexive behaviors. Here we introduce a new behavioral test, with which we examine thermal sensitivity of rats with neuropathic injury. We contrast thermal hyperalgesia between spared nerve injury and chronic constriction injury rats. This device is a fully automated thermal sensitivity assessment tool designed to emphasize integrated learned responses to thermal painful and non-painful stimuli that are applied dynamically to a surface on which the animal is standing. It documents escape behavior in awake, unrestrained animals to innocuous and noxious heating of the floor where the animal is located. Animals learn to minimize pain by escaping to the opposite non-heated side; escape latency is recorded. On this device, thermal stimulus-response curves showed > 6°C leftward shift in both groups of neuropathic rats. In contrast, when these animals were tested on hotplate the stimulus-response shift was < 2°C. Spared nerve injury rats showed even less evidence for thermal hyperalgesia when thermal sensitivity was tested by measuring paw withdrawal to infrared heating, plantar test. The implications of test dependent magnitude of thermal hyperalgesia are discussed from the viewpoint of the tests used, as well as the animal models studied. It is argued that the dynamic thermal operant task reveals the relevance of the neuropathic injury associated pain-like behavior in relation to the whole organism

    Single subject pharmacological-MRI (phMRI) study: Modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor

    Get PDF
    We use fMRI to examine brain activity for pain elicited by palpating joints in a single patient suffering from psoriatic arthritis. Changes in these responses are documented when the patient ingested a single dose of a selective cyclooxygenase-2 inhibitor (COX-2i). We show that mechanical stimulation of the painful joints exhibited a cortical activity pattern similar to that reported for acute pain, with activity primarily localized to the thalamus, insular, primary and secondary somatosensory cortices and the mid anterior cingulum. COX-2i resulted in significant decreased in reported pain intensity and in brain activity after 1 hour of administration. The anterior insula and SII correlated with pain intensity, however no central activation site for the drug was detected. We demonstrate the similarity of the activation pattern for palpating painful joints to brain activity in normal subjects in response to thermal painful stimuli, by performing a spatial conjunction analysis between these maps, where overlap is observed in the insula, thalamus, secondary somatosensory cortex, and anterior cingulate. The results demonstrate that one can study effects of pharmacological manipulations in a single subject where the brain activity for a clinical condition is delineated and its modulation by COX-2i demonstrated. This approach may have diagnostic and prognostic utility

    Breaking down the barriers: fMRI applications in pain, analgesia and analgesics

    Get PDF
    This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain

    Reorganization of functional brain network architecture in chronic osteoarthritis pain

    Get PDF
    Osteoarthritis (OA) manifests with chronic pain, motor impairment, and proprioceptive changes. However, the role of the brain in the disease is largely unknown. Here, we studied brain networks using the mathematical properties of graphs in a large sample of knee and hip OA (KOA, n = 91; HOA, n = 23) patients. We used a robust validation strategy by subdividing the KOA data into discovery and testing groups and tested the generalizability of our findings in HOA. Despite brain global topological properties being conserved in OA, we show there is a network wide pattern of reorganization that can be captured at the subject-level by a single measure, the hub disruption index. We localized reorganization patterns and uncovered a shift in the hierarchy of network hubs in OA: primary sensory and motor regions and parahippocampal gyrus behave as hubs and insular cortex loses its central placement. At an intermediate level of network structure, frontoparietal and cingulo-opercular modules showed preferential reorganization. We examined the association between network properties and clinical correlates: global disruption indices and isolated degree properties did not reflect clinical parameters; however, by modeling whole brain nodal degree properties, we identified a distributed set of regions that reliably predicted pain intensity in KOA and generalized to hip OA. Together, our findings reveal that while conserving global topological properties, brain network architecture reorganizes in OA, at both global and local scale. Network connectivity related to OA pain intensity is dissociated from the major hub disruptions, challenging the extent of dependence of OA pain on nociceptive signaling.CCDRN, Grant/Award Number: Norte‐08‐5369‐FSE‐000026; Unilabs Boavista and the Grünenthal Young Pain Researcher 2017 Grant; Luso‐American Development Foundation R&D@PhD Scholarship Grant; OARSI Collaborative Scholarship 201

    Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity

    Full text link
    Objective Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. The objective of this study was to investigate the degree of connectivity between multiple brain networks in patients with FM, as well as how activity in these networks correlates with the level of spontaneous pain. Methods Resting-state functional magnetic resonance imaging (FMRI) data from 18 patients with FM and 18 age-matched healthy control subjects were analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic, or resting-state, connectivity was evaluated in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also analyzed for covariance with intrinsic connectivity. Results Patients with FM had greater connectivity within the DMN and right EAN (corrected P [ P corr ] < 0.05 versus controls), and greater connectivity between the DMN and the insular cortex, which is a brain region known to process evoked pain. Furthermore, greater intensity of spontaneous pain at the time of the FMRI scan correlated with greater intrinsic connectivity between the insula and both the DMN and right EAN ( P corr < 0.05). Conclusion These findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in patients with FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay among multiple brain networks.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77979/1/27497_ftp.pd

    A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis

    Get PDF
    The effects of an analgesic treatment (lidocaine patches) on brain activity in chronic low back pain (CBP) and in knee osteoarthritis (OA) were investigated using serial fMRI (contrasting fMRI between before and after two weeks of treatment). Prior to treatment brain activity was distinct between the two groups: CBP spontaneous pain was associated mainly with activity in medial prefrontal cortex, while OA painful mechanical knee stimulation was associated with bilateral activity in the thalamus, secondary somatosensory, insular, and cingulate cortices, and unilateral activity in the putamen and amygdala. After 5% lidocaine patches were applied to the painful body part for two weeks, CBP patients exhibited a significant decrease in clinical pain measures, while in OA clinical questionnaire based outcomes showed no treatment effect but stimulus evoked pain showed a borderline decrease. The lidocaine treatment resulted in significantly decreased brain activity in both patient groups with distinct brain regions responding in each group, and sub-regions within these areas were correlated with pain ratings specifically for each group (medial prefrontal cortex in CBP and thalamus in OA). We conclude that the two chronic pain conditions involve distinct brain regions, with OA pain engaging many brain regions commonly observed in acute pain. Moreover, lidocaine patch treatment modulates distinct brain circuitry in each condition, yet in OA we observe divergent results with fMRI and with questionnaire based instruments
    corecore