10 research outputs found

    Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    Get PDF
    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-ÎșB (nuclear factor ÎșB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-ÎșB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-ÎșB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy

    Induction of Apoptosis by Cross-Linking Antibodies Bound to Human B-Lymphoma Cells: Expression of Annexin V Binding Sites on the Antibody Cap

    No full text
    There are many reports that cross-linking antibodies (Abs) bound to the surface of B-lymphoma cells can induce apoptosis and/or cell death, especially with anti-CD20 Abs. This study was intended to extend our understanding of these effects. To determine if CD20 is a unique target in this respect, or whether Abs to other antigens would have similar effects, six Abs were tested, with and without cross-linking with a secondary Ab, on three target cell lines. We utilized assays that distinguish between apoptotic, dead, and viable cells. Two assays were used: Annexin V plus propidium iodide, and JC-1 plus SYTOXÂź green (Molecular Probes, Eugene, OR). Most of the Abs tested induced a low level of apoptosis and cell death in Ramos cells, but not in the other two cell lines (Raji and RL). In general, the level of toxicity was correlated with the level of antigen expression, with Abs to high-density antigens having the strongest effects. However, since the majority of Ramos cells continued to multiply, it is questionable whether toxicity at this level can provide a significant clinical benefit. Unexpectedly, there was also a population of cells that stained weakly with Annexin V. These cells were distinct from classical apoptotic cells, and appeared to belong to the viable cell population. In these cells, Annexin V stained the region of the Ab cap, in contrast to the ringed staining of classical apoptotic cells. In conclusion: 1) Low-level induction of apoptosis was not unique for anti-CD20 Abs, but occurred similarly with other Abs, and 2) results of Annexin V staining experiments may need to be reevaluated. Further studies are required to explain why Annexin V binding sites are exposed in the region of an Ab cap
    corecore