481 research outputs found

    Quantum state tomography via non-convex Riemannian gradient descent

    Full text link
    The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number κ\kappa of the ground truth state. Consequently, the total number of iterations can be as large as O(κln(1ε))O(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})) to achieve the estimation error ε\varepsilon. In this work, we derive a quantum state tomography scheme that improves the dependence on κ\kappa to the logarithmic scale; namely, our algorithm could achieve the approximation error ε\varepsilon in O(ln(1κε))O(\ln(\frac{1}{\kappa\varepsilon})) steps. The improvement comes from the application of the non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by numerical results.Comment: Comments are welcome

    Nardosinane-Type Sesquiterpenoids from the Formosan Soft Coral Paralemnalia thyrsoides

    Get PDF
    Five new nardosinane-type sesquiterpenoids, paralemnolins Q–U (1–5), along with three known compounds (6–8), were isolated from the Formosan soft coral Paralemnalia thyrsoides. The structures of new metabolites were elucidated on the basis of extensive spectroscopic methods, and the absolute configuration of 1 was determined by the application of Mosher’s method on 1. Among these metabolites, 1 and 3 are rarely found nardosinane-type sesquiterpenoids, possessing novel polycyclic structures. Compounds 1, 3, 6 and 7 were found to possess neuroprotective activity

    Induction of Cellular Senescence by Doxorubicin Is Associated with Upregulated miR-375 and Induction of Autophagy in K562 Cells

    Get PDF
    BACKGROUND: Cellular senescence is a specialized form of growth arrest that is generally irreversible. Upregulated p16, p53, and p21 expression and silencing of E2F target genes have been characterized to promote the establishment of senescence. It can be further aided by the transcriptional repression of proliferation-associated genes by the action of HP1γ, HMGA, and DNMT proteins to produce a repressive chromatin environment. Therefore, senescence has been suggested to functions as a natural brake for tumor development and plays a critical role in tumor suppression and aging. METHODOLOGY/PRINCIPAL FINDINGS: An in vitro senescence model has been established by using K562 cells treated with 50 nM doxorubicin (DOX). Since p53 and p16 are homozygously deleted in the K562 cells, the DOX-induced senescence in K562 cells ought to be independent of p53 and p16-pRb pathways. Indeed, no change in the expression of the typical senescence-associated premalignant cell markers in the DOX-induced senescent K562 cells was found. MicroRNA profiling revealed upregulated miR-375 in DOX-induced senescent K562 cells. Treatment with miR-375 inhibitor was able to reverse the proliferation ability suppressed by DOX (p<0.05) and overexpression of miR-375 suppressed the normal proliferation of K562 cells. Upregulated miR-375 expression was associated with downregulated expression of 14-3-3zeta and SP1 genes. Autophagy was also investigated since DOX treatment was able to induce cells entering senescence and eventually lead to cell death. Among the 24 human autophagy-related genes examined, a 12-fold increase of ATG9B at day 4 and a 20-fold increase of ATG18 at day 2 after DOX treatment were noted. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that in the absence of p53 and p16, the induction of senescence by DOX was associated with upregulation of miR-375 and autophagy initiation. The anti-proliferative function of miR-375 is possibly exerted, at least in part, by targeting 14-3-3zeta and SP1 genes

    Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    Get PDF
    BACKGROUND: Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. CONCLUSIONS/SIGNIFICANCE: These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe
    corecore