106 research outputs found

    Coherently driven microcavity-polaritons and the question of superfluidity

    Get PDF
    M.H.S. acknowledges financial support from EPSRC (Grants no. EP/I028900/2 and no. EP/K003623/2) and J.K. from EPSRC program Hybrid Polaritonics (EP/M025330/1).Due to their driven-dissipative nature, photonic quantum fluids present new challenges in understanding superfluidity. Some associated effects have been observed, and notably the report of nearly dissipationless flow for coherently driven microcavity-polaritons was taken as a 'smoking gun' for superflow. Here we show that the superfluid response - the difference between responses to longitudinal and transverse forces - is zero for coherently driven polaritons. This is a direct consequence of the gapped excitation spectrum caused by external phase locking. Furthermore, while a normal component exists at finite pump momentum, the remainder forms a rigid state that does not respond to either longitudinal or transverse perturbations. Interestingly, the total response almost vanishes when the real part of the excitation spectrum has a linear dispersion at low frequency, characteristic of equilibrium bosonic superfluids, which was the regime investigated experimentally. These results suggest that the observed suppression of scattering should be interpreted as a sign of this new rigid state and not of a superfluid.Publisher PDFPeer reviewe

    The modern pollen-vegetation relationship of a tropical forest-savannah mosaic landscape, Ghana, West Africa

    Get PDF
    Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40% should be considered as indicative of savannah-type vegetation in the fossil record

    Vertical zonation of testate amoebae in the Elatia Mires, northern Greece : palaeoecological evidence for a wetland response to recent climate change or autogenic processes?

    Get PDF
    The Elatia Mires of northern Greece are unique ecosystems of high conservation value. The mires are climatically marginal and may be sensitive to changing hydroclimate, while northern Greece has experienced a significant increase in aridity since the late twentieth century. To investigate the impact of recent climatic change on the hydrology of the mires, the palaeoecological record was investigated from three near-surface monoliths extracted from two sites. Testate amoebae were analysed as sensitive indicators of hydrology. Results were interpreted using transfer function models to provide quantitative reconstructions of changing water table depth and pH. AMS radiocarbon dates and 210Pb suggest the peats were deposited within the last c. 50 years, but do not allow a secure chronology to be established. Results from all three profiles show a distinct shift towards a more xerophilic community particularly noted by increases in Euglypha species. Transfer function results infer a distinct lowering of water tables in this period. A hydrological response to recent climate change is a tenable hypothesis to explain this change; however other possible explanations include selective test decay, vertical zonation of living amoebae, ombrotrophication and local hydrological change. It is suggested that a peatland response to climatic change is the most probable hypothesis, showing the sensitivity of marginal peatlands to recent climatic change

    Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets

    Get PDF
    Transfer functions are widely used in palaeoecology to infer past environmental conditions from fossil remains of many groups of organisms. In contrast to traditional training-set design with one observation per site, some training-sets, including those for peatland testate amoeba-hydrology transfer functions, have a clustered structure with many observations from each site. Here we show that this clustered design causes standard performance statistics to be overly optimistic. Model performance when applied to independent data sets is considerably weaker than suggested by statistical cross-validation. We discuss the reasons for these problems and describe leave-one-site-out cross-validation and the cluster bootstrap as appropriate methods for clustered training-sets. Using these methods we show that the performance of most testate amoeba-hydrology transfer functions is worse than previously assumed and reconstructions are more uncertain

    Palaeoecology of testate amoebae in a tropical peatland.

    Get PDF
    We present the first detailed analysis of subfossil testate amoebae from a tropical peatland. Testate amoebae were analysed in a 4-m peat core from western Amazonia (Peru) and a transfer function developed from the site was applied to reconstruct changes in water table over the past ca. 8,000 years. Testate amoebae were in very low abundance in the core, especially in the lower 125cm, due to a combination of poor preservation and obscuration by other organic matter. A modified preparation method enabled at least 50 testate amoebae to be counted in each core sample. The most abundant taxa preserved include Centropyxis aculeata, Hyalosphenia subflava, Phryganella acropodia and Trigonopyxis arcula. Centropyxis aculeata, an unambiguous wet indicator, is variably present and indicates several phases of near-surface water table. Our work shows that even degraded, low-abundance assemblages of testate amoebae can provide useful information regarding the long-term ecohydrological developmental history of tropical peatlands

    Significance testing testate amoeba water table reconstructions

    Get PDF
    Transfer functions are valuable tools in palaeoecology, but their output may not always be meaningful. A recently-developed statistical test ('randomTF') offers the potential to distinguish among reconstructions which are more likely to be useful, and those less so. We applied this test to a large number of reconstructions of peatland water table depth based on testate amoebae. Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-significant results (P > 0.05). The underlying reasons for this outcome are unclear. We found no significant correlation between randomTF P-value and transfer function performance, the properties of the training set and reconstruction, or measures of transfer function fit. These results give cause for concern but we believe it would be extremely premature to discount the results of non-significant reconstructions. We stress the need for more critical assessment of transfer function output, replication of results and ecologically-informed interpretation of palaeoecological data

    Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology

    Get PDF
    In the decade since the first pan-European testate amoeba-based transfer function for peatland palaeohydrological reconstruction was published, a vast amount of additional data collection has been undertaken by the research community. Here, we expand the pan-European dataset from 128 to 1799 samples, spanning 35° of latitude and 55° of longitude. After the development of a new taxonomic scheme to permit compilation of data from a wide range of contributors and the removal of samples with high pH values, we developed ecological transfer functions using a range of model types and a dataset of ∌1300 samples. We rigorously tested the efficacy of these models using both statistical validation and independent test sets with associated instrumental data. Model performance measured by statistical indicators was comparable to other published models. Comparison to test sets showed that taxonomic resolution did not impair model performance and that the new pan-European model can therefore be used as an effective tool for palaeohydrological reconstruction. Our results question the efficacy of relying on statistical validation of transfer functions alone and support a multi-faceted approach to the assessment of new models. We substantiated recent advice that model outputs should be standardised and presented as residual values in order to focus interpretation on secure directional shifts, avoiding potentially inaccurate conclusions relating to specific water-table depths. The extent and diversity of the dataset highlighted that, at the taxonomic resolution applied, a majority of taxa had broad geographic distributions, though some morphotypes appeared to have restricted ranges

    Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data

    Get PDF
    Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change

    Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen Isotope Stage 3.

    Get PDF
    Quantitative palaeotemperature estimates for the earlier part of Oxygen Isotope Stage (OIS-) 3 are inferred from subfossil chironomid remains. The high-latitudinal study site of Sokli, northeast Finland, provides for a unique lacustrine deposit covering the earlier part of OIS-3, and the chironomid remains found in the sediments show that a shallow lake with a diverse fauna was present at the study site throughout the record. Using a Norwegian calibration data set as a modern analogue, mean July air temperatures are reconstructed. The chironomid-inferred July air temperatures are surprisingly high, reaching values similar to the current temperature at the study site. Other proxies that were applied to the sediments included the analysis of botanical and zoological macro-remains, and our results concur with temperature estimates derived from climate indicator taxa. Summer temperatures for interstadial conditions, reconstructed with climate models, are as high as our proxy-based palaeotemperatures
    • 

    corecore