49 research outputs found
Femoral neck fractures after arthroscopic femoral neck osteochondroplasty for femoroacetabular impingement
PURPOSE: The objective of this study was to evaluate the rate, associated risk factors and outcome of insufficiency femoral neck fractures following arthroscopic femoral neck osteochondroplasty for femoroacetabular impingement. METHODS: Between 2005 and 2009, a consecutive series of 376 arthroscopic femoral osteochondroplasties for femoroacetabular impingement were performed and analysed. Seven postoperative fractures were found and comprise the fracture group. The amount of femoral head-neck bone resected as assessed on follow-up cross table lateral views, as well as age, gender, height, weight and BMI, was compared between the fracture group and the entire collective. Subjective outcome was recorded using the WOMAC score. RESULTS: Seven fractures (1.9 %) were identified. All occurred in males at an average of 4.4 weeks postoperatively and were considered insufficiency fractures. The fracture group had a significantly higher mean age (p = 0.01) and height (p = 0.013). Within the fracture group, alpha angles were lower (p = 0.009) and resection depth ratios were higher (p < 0.001). The femoral offset was significantly higher (p = 0.016) in the fracture group and in male patients (p < 0.001). The cut-off value for resection depth ratio on cross table lateral radiograph was 18 % of the femoral head radius. After a mean follow-up of 20 months, an inferior WOMAC (p = 0.030) was recorded in the fracture group. CONCLUSION: Femoral neck insufficiency fractures were identified in 1.9 % of our arthroscopic femoral osteochondroplasty cases. Significant new pain following a period of satisfactory recovery after arthroscopic femoral neck osteochondroplasty should alert the surgeon to the possibility of this complication. If a resection depth ratio of more than 18 % is recognized on the postoperative cross table lateral view, particularly in male patients with a high femoral head-shaft offset, the risk of postoperative insufficiency fracture is increased. This study not only defines the complication rate, but also identifies associated risk factors and determines the influence on the postoperative subjective short-term result. Important information for both the patient and orthopaedic surgeon is provided and may have a direct consequence on the postoperative protocol. LEVEL OF EVIDENCE: IV
Efficiency of Ontario primary care physicians across payment models : a stochastic frontier analysis
Objective
The study examines the relationship between the primary care model that a physician belongs to and the efficiency of the primary care physician in Ontario, Canada.
Methods
Survey data were collected from 183 self-selected physicians and linked to administrative databases to capture the provision of services to the patients served for the 12 month period ending June 30, 2013, and the characteristics of the patients at the beginning of the study period. Two stochastic frontier regression models were used to estimate efficiency scores and parameters for two separate outputs: the number of distinct patients seen and the number of visits.
Results
Because of missing data, only 165 physicians were included in the analyses. The average efficiency was 0.72 for both outputs with scores varying from 4 % to 93 % for the visits and 5 % to 94 % for the number of patients seen. We observed that there were both very low and very high efficiency scores within each model. These variations were larger than variations in average scores across models
Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach
Background: Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment.
Methods: We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples.
Results: In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects ( = .018, = .015 and = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients.
Conclusions/Limitations: Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
The impact of viral mutations on recognition by SARS-CoV-2 specific TÂ cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC