512 research outputs found
A Brief Journey through Asian American History
In order to understand the complexities of the Asian American experience, readers must be able to comprehend how the past has built a foundation for the treatment of individuals both inside and outside of the Asian community. Based on various academic editorials and books, we have analyzed what we believe to be the most valuable historical facts, stories, and ideas and presented them in a way that provides the most important information along with our perceptions of each topic. This compilation of articles looks to bring largely unknown issues to the forefront of reader’s minds, in a pursuit to create a better understanding of what it means to be Asian American today. The importance of historical events in how they affect modern society, social norms, and race relations is more important now more than ever. Beginning with a commentary on the history of Chinese exclusion in California during the late 1800’s, the pieces that follow touch upon multiple historical events related to various communties within the Asian community including Japanese internment, the Revolutionary War in the Philippines, the treatment of Korean immigrants following the Korean War, and much more. The existence of intersectionality between the Asian American identity and numerous other identities cannot be overlooked. All of the issues presented have an influence on both the African American and LGBTQ+ communities. We kindly ask readers to not only keep in mind how these articles have shaped their own lives, but also to remember how these acts of injustice have changed the perception of all other minorities. The main theme of this project can be encapsulated in a quote from legendary Japanese clothing designer Yohji Yamamoto: “With one eye on the past, I walk backwards into the future”https://digital.sandiego.edu/ethn-zines/1012/thumbnail.jp
Moving ego versus moving time : investigating the shared source of future-bias and near-bias
It has been hypothesized that our believing that, or its seeming to us as though, the world is in some way dynamical partially explains (and perhaps rationalizes) future-bias. Recent work has, in turn, found a correlation between future-bias and near-bias, suggesting that there is a common explanation for both. Call the claim that what partially explains our being both future- and near-biased is our believing/it seeming to us as though the world is dynamical, the dynamical explanation. We empirically test two versions of the dynamical explanation. The first is the moving ego explanation—according to which it is our belief that the ego moves, or our phenomenology as of the ego moving, that jointly (partially) explains future- and near-bias. The second is the moving time explanation—according to which it is our belief that time robustly passes, or our phenomenology as of robust passage, which jointly (partially) explain future- and near-bias. We found no evidence in favour of either explanation
Ocean Seismic Network Pilot Experiment
Author Posting. © American Geophysical Union, 2003. It is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1092, doi:10.1029/2002GC000485.The primary goal of the Ocean Seismic Network Pilot Experiment (OSNPE) was to learn how to make high quality broadband seismic measurements on the ocean bottom in preparation for a permanent ocean seismic network. The experiment also had implications for the development of a capability for temporary (e.g., 1 year duration) seismic experiments on the ocean floor. Equipment for installing, operating and monitoring borehole observatories in the deep sea was also tested including a lead-in package, a logging probe, a wire line packer and a control vehicle. The control vehicle was used in three modes during the experiment: for observation of seafloor features and equipment, for equipment launch and recovery, and for power supply and telemetry between ocean bottom units and the ship. The OSNPE which was completed in June 1998 acquired almost four months of continuous data and it demonstrated clearly that a combination of shallow buried and borehole broadband sensors could provide comparable quality data to broadband seismic installations on islands and continents. Burial in soft mud appears to be adequate at frequencies below the microseism peak. Although the borehole sensor was subject to installation noise at low frequencies (0.6 to 50 mHz), analysis of the OSNPE data provides new insights into our understanding of ocean bottom ambient noise. The OSNPE results clearly demonstrate the importance of sediment borne shear modes in ocean bottom ambient noise behavior. Ambient noise drops significantly at high frequencies for a sensor placed just at the sediment basalt interface. At frequencies above the microseism peak, there are two reasons that ocean bottom stations have been generally regarded as noisier than island or land stations: ocean bottom stations are closer to the noise source (the surface gravity waves) and most ocean bottom stations to date have been installed on low rigidity sediments where they are subject to the effects of shear wave resonances. When sensors are placed in boreholes in basement the performance of ocean bottom seismic stations approaches that of continental and island stations. A broadband borehole seismic station should be included in any real-time ocean bottom observatory.This work was sponsored by the National Science Foundation (NSF Grant Numbers: OCE-9522114, OCE-9523541 and OCE-9819439) with additional support from Incorporated Research Institutions for Seismology (IRIS), Joint Oceanographic Institutions, Inc. (JOI Contract No: 12-94), Scripps Institution of Oceanography, a Mellon Grant from Woods Hole Oceanographic Institution, and the Earthquake Research Institute at the University of Tokyo (Visiting Professorship for RAS)
Microchannel cooling for the LHCb VELO Upgrade I
The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC
Run 3, uses silicon microchannel coolers with internally circulating bi-phase
\cotwo for thermal control of hybrid pixel modules operating in vacuum. This is
the largest scale application of this technology to date. Production of the
microchannel coolers was completed in July 2019 and the assembly into cooling
structures was completed in September 2021. This paper describes the R\&D path
supporting the microchannel production and assembly and the motivation for the
design choices. The microchannel coolers have excellent thermal peformance, low
and uniform mass, no thermal expansion mismatch with the ASICs and are
radiation hard. The fluidic and thermal performance is presented.Comment: 31 pages, 27 figure
The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*
We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = M⊕, a radius of Rc = R⊕, and a density of ρc = g cm−3. With its characteristics, the outer planet (ρc = g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed
Another Shipment of Six Short-Period Giant Planets from TESS
We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a
combination of time-series photometric and spectroscopic follow-up observations
from the TESS Follow-up Observing Program (TFOP) Working Group, we have
determined that the planets are Jovian-sized (R = 1.00-1.45 R),
have masses ranging from 0.92 to 5.35 M, and orbit F, G, and K stars
(4753 T 7360 K). We detect a significant orbital eccentricity
for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days,
= ), TOI-2145 b (P = 10.261 days, =
), and TOI-2497 b (P = 10.656 days, =
). TOI-2145 b and TOI-2497 b both orbit subgiant host
stars (3.8 g 4.0), but these planets show no sign of inflation
despite very high levels of irradiation. The lack of inflation may be explained
by the high mass of the planets; M (TOI-2145
b) and M (TOI-2497 b). These six new discoveries
contribute to the larger community effort to use {\it TESS} to create a
magnitude-complete, self-consistent sample of giant planets with
well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
Deiminated proteins and extracellular vesicles - novel serum biomarkers in whales and Orca
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals
TESS Giants Transiting Giants. I.: A Noninflated Hot Jupiter Orbiting a Massive Subgiant
While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ∗ = 1.53 ± 0.12 M o˙, R ∗ = 2.90 ± 0.14 R o˙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution
- …