161 research outputs found

    Tyrosine, Cysteine, and S-Adenosyl Methionine Stimulate In Vitro [FeFe] Hydrogenase Activation

    Get PDF
    Background: [FeFe] hydrogenases are metalloenzymes involved in the anaerobic metabolism of H2. These proteins are distinguished by an active site cofactor known as the H-cluster. This unique [6Fe–6S] complex contains multiple non-protein moieties and requires several maturation enzymes for its assembly. The pathways and biochemical precursors for H-cluster biosynthesis have yet to be elucidated. Principal Findings: We report an in vitro maturation system in which, for the first time, chemical additives enhance [FeFe] hydrogenase activation, thus signifying in situ H-cluster biosynthesis. The maturation system is comprised of purified hydrogenase apoprotein; a dialyzed Escherichia coli cell lysate containing heterologous HydE, HydF, and HydG maturases; and exogenous small molecules. Following anaerobic incubation of the Chlamydomonas reinhardtii HydA1 apohydrogenase with S-adenosyl methionine (SAM), cysteine, tyrosine, iron, sulfide, and the non-purified maturases, hydrogenase activity increased 5-fold relative to incubations without the exogenous substrates. No conditions were identified in which addition of guanosine triphosphate (GTP) improved hydrogenase maturation. Significance: The in vitro system allows for direct investigation of [FeFe] hydrogenase activation. This work also provides a foundation for studying the biosynthetic mechanisms of H-cluster biosynthesis using solely purified enzymes and chemical additives

    Active Living for Rural Youth [Policy Brief]

    Get PDF
    Childhood obesity and inactivity are significant and growing problems in many rural areas where the prevalence of obesity and overweight has been shown to be 25 percent higher than urban rates, even after controlling for income, race, physical activity and other known risk factors. While rural areas are often viewed as an ideal setting for an active childhood, kids face a variety of obstacles to incorporating physical activity in their daily lives. Active living research to date has focused largely on urban and suburban environments. This study investigates the complex web of determinants that support or undermine physical activity in rural youth. We visited three very different small Maine towns (Waldoboro, Dover-Foxcroft and Houlton), where we led youth focus groups and interviewed key informants including rural town planners, school personnel, recreation directors and parents. We also conducted townscape surveys of the physical characteristics of each community. Obesity and inactivity have roots in many aspects of rural life, from the physical environment, to social, policy and programmatic factors

    Consistency of Field-Based Measures of Neuromuscular Control Using Force Plate Diagnostics in Elite Male Youth Soccer Players

    Get PDF
    Consistency of field-based measures of neuromuscular control using force-plate diagnostics in elite male youth soccer players. J Strength Cond Res 30(12): 3304–3311, 2016—Deficits in neuromuscular control during movement patterns such as landing are suggested pathomechanics that underlie sport-related injury. A common mode of assessment is measurement of landing forces during jumping tasks; however, these measures have been used less frequently in male youth soccer players, and reliability data are sparse. The aim of this study was to examine the reliability of a field-based neuromuscular control screening battery using force-plate diagnostics in this cohort. Twenty-six pre–peak height velocity (PHV) and 25 post-PHV elite male youth soccer players completed a drop vertical jump (DVJ), single-leg 75% horizontal hop and stick (75%HOP), and single-leg countermovement jump (SLCMJ). Measures of peak landing vertical ground reaction force (pVGRF), time to stabilization, time to pVGRF, and pVGRF asymmetry were recorded. A test-retest design was used, and reliability statistics included change in mean, intraclass correlation coefficient, and coefficient of variation (CV). No significant differences in mean score were reported for any of the assessed variables between test sessions. In both groups, pVGRF and asymmetry during the 75%HOP and SLCMJ demonstrated largely acceptable reliability (CV ≤ 10%). Greater variability was evident in DVJ pVGRF and all other assessed variables, across the 3 protocols (CV range = 13.8–49.7%). Intraclass correlation coefficient values ranged from small to large and were generally higher in the post-PHV players. The results of this study suggest that pVGRF and asymmetry can be reliably assessed using a 75%HOP and SLCMJ in this cohort. These measures could be used to support a screening battery for elite male youth soccer players and for test-retest comparison

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K(+) permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function

    Cell-free H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CN− Ligands Derive from Tyrosine

    Get PDF
    [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO) and two cyanide (CN−) ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG) are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN− ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation

    High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli

    Get PDF
    BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2) production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8-30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H(2) evolution with rates comparable to those of enzymes isolated from their respective native organisms. SIGNIFICANCE: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H(2)-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments

    The International College of Neuro-Psychopharmacology (CINP) treatment guidelines for Bipolar disorder in adults (CINP-BD-2017), part 2:Review, grading of the evidence and a precise algorithm

    Get PDF

    Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage

    Get PDF
    © 2019 Elsevier Inc. Acid mine drainage (AMD) is a significant contributor of metal pollution leading to ecosystem damage. Bioindicator organisms such as intertidal brown macroalgae have an important role in quantifying the risks of metal bioaccumulation in coastal locations exposed to AMD contamination. Measurement of As, Cd, Cu, Fe, Pb, and Zn accumulation was performed in Fucus serratus, Fucus vesiculosus and Ascophyllum nodosum sampled from two marine locations near to an abandoned Cu mine in Anglesey, Wales, UK. Transect samples were taken from a coastal location (Amlwch) that has seen a substantial increase in AMD contamination over 15 years, in comparison to a nearby estuarine location (Dulas Estuary leading to Dulas Bay) with a historic legacy of pollution. These were compared with samples from the same sites taken 30 years earlier. Some of the Dulas macroalgae samples had Cd, Cu and Zn concentrations that were above background but in general indicated a non-polluted estuary in comparison to substantial pollution over previous decades. In contrast, Fucus samples collected from directly below an AMD outflow at Amlwch showed extremely elevated metal bioaccumulation (>250 mg Fe g−1, >6 mg Cu g−1, >2 mg Zn g−1, >190 μg As g−1) and evidence of macroalgae toxicity, indicating severe pollution at this site. However, the pollution dispersed within 200 m of the outflow source. This study has demonstrated the efficiency of three brown macroalgae species as indicators for metal bioavailability at high spatial resolution and over time
    • …
    corecore