5,394 research outputs found

    A systematic assessment of the pro-poor reach of development bank investments in urban sanitation

    Get PDF
    This paper presents an assessment of development banks’ investment in urban sanitation between 2010 and 2017. It reveals an overall increase in investment, yet this falls short of bridging the significant financing gap in the sector. The paper also assesses the major areas of investment to show that, on the infrastructure side, 20 times more money is invested in sewerage than faecal sludge management, while on the enabling environment side, institutional capacity building is the most financed area. Using a new pro-poor assessment tool, an appraisal was made of the extent to which the investments were pro-poor. This analysis indicates that over half of investments, where an assessment could be made, were considered to be pro-poor, yet the use of the assessment tool reflects a lack of information within development bank reporting on the pro-poor nature of investments. Going forward, improving how development banks report on the pro-poor character of their investments would be a useful step for helping the sector assess the effectiveness of investments. The paper concludes by arguing that, despite progress, development banks should be even more ambitious in seeking to support pro-poor urban sanitation investments if the world is to overcome the urban sanitation challenge

    Magnetically Controlled Accretion Flows onto Young Stellar Objects

    Get PDF
    (abridged) Accretion from disks onto young stars is thought to follow magnetic field lines from the inner disk edge to the stellar surface. The accretion flow thus depends on the geometry of the magnetic field. This paper extends previous work by constructing a collection of orthogonal coordinate systems, including the corresponding differential operators, where one coordinate traces the magnetic field lines. This formalism allows for an (essentially) analytic description of the geometry and the conditions required for the flow to pass through sonic points. Using this approach, we revisit the problem of magnetically controlled accretion flow in a dipole geometry, and then generalize the treatment to consider magnetic fields with multiple components, including dipole, octupole, and split monopole contributions. This approach can be generalized further to consider more complex magnetic field configurations. Observations indicate that accreting young stars have substantial dipole and octupole components, and that accretion flow is transonic. If the effective equation of state for the fluid is too stiff, the flow cannot pass smoothly through the sonic points in steady state. For a multipole field of order \ell, we derive a constraint on the polytropic index, n>\ell+3/2, required for steady transonic flow to reach free-fall velocities. For octupole fields, inferred on surfaces of T Tauri stars, n>9/2, so that the flow must be close to isothermal. The inclusion of octupole field components produces higher densities at the stellar surface and smaller hot spots, which occur at higher latitudes; the magnetic truncation radius is also modified. This contribution thus increases our understanding of magnetically controlled accretion for young stellar objects and can be applied to a variety of additional astrophysical problems.Comment: 50 pages, 8 figures, accepted to Ap

    A critical role for lymphatic endothelial heparan sulfate in lymph node metastasis

    Get PDF
    Abstract Background Lymph node metastasis constitutes a key event in tumor progression. The molecular control of this process is poorly understood. Heparan sulfate is a linear polysaccharide consisting of unique sulfate-modified disaccharide repeats that allow the glycan to bind a variety of proteins, including chemokines. While some chemokines may drive lymphatic trafficking of tumor cells, the functional and genetic importance of heparan sulfate as a possible mediator of chemokine actions in lymphatic metastasis has not been reported. Results We applied a loss-of-function genetic approach employing lymphatic endothelial conditional mutations in heparan sulfate biosynthesis to study the effects on tumor-lymphatic trafficking and lymph node metastasis. Lymphatic endothelial deficiency in N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in sulfating nascent heparan sulfate chains, resulted in altered lymph node metastasis in tumor-bearing gene targeted mice. This occurred in mice harboring either a pan-endothelial Ndst1 mutation or an inducible lymphatic-endothelial specific mutation in Ndst1. In addition to a marked reduction in tumor metastases to the regional lymph nodes in mutant mice, specific immuno-localization of CCL21, a heparin-binding chemokine known to regulate leukocyte and possibly tumor-cell traffic, showed a marked reduction in its ability to associate with tumor cells in mutant lymph nodes. In vitro modified chemotaxis studies targeting heparan sulfate biosynthesis in lymphatic endothelial cells revealed that heparan sulfate secreted by lymphatic endothelium is required for CCL21-dependent directional migration of murine as well as human lung carcinoma cells toward the targeted lymphatic endothelium. Lymphatic heparan sulfate was also required for binding of CCL21 to its receptor CCR7 on tumor cells as well as the activation of migration signaling pathways in tumor cells exposed to lymphatic conditioned medium. Finally, lymphatic cell-surface heparan sulfate facilitated receptor-dependent binding and concentration of CCL21 on the lymphatic endothelium, thereby serving as a mechanism to generate lymphatic chemokine gradients. Conclusions This work demonstrates the genetic importance of host lymphatic heparan sulfate in mediating chemokine dependent tumor-cell traffic in the lymphatic microenvironment. The impact on chemokine dependent lymphatic metastasis may guide novel therapeutic strategies

    Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumours expressing de2-7 EGFR or amplified EGFR

    Get PDF
    We report the generation of a chimeric monoclonal antibody (ch806) with specificity for an epitope on the epidermal growth factor receptor (EGFR) that is different from that targeted by all other anti-EGFR therapies. Ch806 antibody is reactive to both de2-7 and overexpressed wild-type (wt) EGFR but not native EGFR expressed in normal tissues at physiological levels. Ch806 was stably expressed in CHO (DHFR −/−) cells and purified for subsequent characterisation and validated for use in preliminary immunotherapy investigations. Ch806 retained the antigen binding specificity and affinity of the murine parental antibody. Furthermore, ch806 displayed enhanced antibody-dependent cellular cytotoxicity against target cells expressing the 806 antigen in the presence of human effector cells. Ch806 was successfully radiolabelled with both iodine-125 and indium-111 without loss of antigen binding affinity or specificity. The radioimmunoconjugates were stable in the presence of human serum at 37°C for up to 9 days and displayed a terminal half-life (T1/2β) of approximately 78 h in nude mice. Biodistribution studies undertaken in BALB/c nude mice bearing de2-7 EGFR-expressing or amplified EGFR-expressing xenografts revealed that 125I-labelled ch806 failed to display any significant tumour retention. However, specific and prolonged tumour localisation of' 111In-labelled ch806 was demonstrated with uptake of 31%ID g−1 and a tumour to blood ratio of 5 : 1 observed at 7 days postinjection. In vivo therapy studies with ch806 demonstrated significant antitumour effects on established de2-7 EGFR xenografts in BALB/c nude mice compared to control, and both murine 806 and the anti-EGFR 528 antibodies. These results support a potential therapeutic role of ch806 in the treatment of suitable EGFR-expressing tumours, and warrants further investigation of the potential of ch806 as a therapeutic agent

    The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems II: CO Fourth Positive Emission and Absorption

    Get PDF
    We exploit the high sensitivity and moderate spectral resolution of the HSTHST-Cosmic Origins Spectrograph to detect far-ultraviolet spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. We measure a CO column density and rotational excitation temperature of N(CO) = 2 +/- 1 ×\times 1017^{17} cm2^{-2} and T_rot(CO) 500 +/- 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by ultraviolet line photons, predominantly HI LyA. All three objects show emission from CO bands at λ\lambda >> 1560 \AA, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2_{2}, and photo-excited H2; all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar LyA emission profile. We find CO parameters in the range: N(CO) 101819^{18-19} cm2^{-2}, T_{rot}(CO) > 300 K for the LyA-pumped emission. We combine these results with recent work on photo- and collisionally-excited H2_{2} emission, concluding that the observations of ultraviolet-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm.Comment: 12 pages, 7 figures, 3 tables. ApJ - accepte

    Radio continuum observations of Class I protostellar disks in Taurus: constraining the greybody tail at centimetre wavelengths

    Get PDF
    We present deep 1.8 cm (16 GHz) radio continuum imaging of seven young stellar objects in the Taurus molecular cloud. These objects have previously been extensively studied in the sub-mm to NIR range and their SEDs modelled to provide reliable physical and geometrical parametres.We use this new data to constrain the properties of the long-wavelength tail of the greybody spectrum, which is expected to be dominated by emission from large dust grains in the protostellar disk. We find spectra consistent with the opacity indices expected for such a population, with an average opacity index of beta = 0.26+/-0.22 indicating grain growth within the disks. We use spectra fitted jointly to radio and sub-mm data to separate the contributions from thermal dust and radio emission at 1.8 cm and derive disk masses directly from the cm-wave dust contribution. We find that disk masses derived from these flux densities under assumptions consistent with the literature are systematically higher than those calculated from sub-mm data, and meet the criteria for giant planet formation in a number of cases.Comment: submitted MNRA

    Circadian profiles in young people during the early stages of affective disorder

    Get PDF
    Although disturbances of the circadian system are strongly linked to affective disorders, no known studies have examined melatonin profiles in young people in early stages of illness. In this study, 44 patients with an affective disorder underwent clinical and neuropsychological assessments. They were then rated by a psychiatrist according to a clinical staging model and were categorized as having an ‘attenuated syndrome' or an ‘established disorder'. During the evening, salivary melatonin was sampled under dim light conditions over an 8-h interval and for each patient, the time of melatonin onset, total area under the curve and phase angle (difference between time of melatonin onset and time of habitual sleep onset) were computed. Results showed that there was no difference in the timing of melatonin onset across illness stages. However, area under the curve analyses showed that those patients with ‘established disorders' had markedly reduced levels of melatonin secretion, and shorter phase angles, relative to those with ‘attenuated syndromes'. These lower levels, in turn, were related to lower subjective sleepiness, and poorer performance on neuropsychological tests of verbal memory. Overall, these results suggest that for patients with established illness, dysfunction of the circadian system relates clearly to functional features and markers of underlying neurobiological change. Although the interpretation of these results would be greatly enhanced by control data, this work has important implications for the early delivery of chronobiological interventions in young people with affective disorders

    Surface modified cellulose scaffolds for tissue engineering

    Get PDF
    We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorite in the presence of sodium bromide and 2,2,6,6-tetramethylpipiridine 1-oxyl radical to introduce a positive, or negative, charge, respectively. This modification process did not degrade the mechanical properties of the bulk material, but grafting of a positively charged moiety to the cellulose surface (cationic cellulose) increased cell attachment by 70 compared to unmodified cellulose, while negatively charged, oxidised cellulose films (anionic cellulose), showed low levels of cell attachment comparable to those seen for unmodified cellulose. Only a minimal level of cationic surface derivitisation (ca 3 degree of substitution) was required for increased cell attachment and no mediating proteins were required. Cell adhesion studies exhibited the same trends as the attachment studies, while the mean cell area and aspect ratio was highest on the cationic surfaces. Overall, we demonstrated the utility of positively charged bacterial cellulose in tissue engineering in the absence of proteins for cell attachment
    corecore