35 research outputs found

    The Spectral Energy Distribution of Dust Emission in the Edge-on spiral galaxy NGC 4631 as seen with Spitzer and the James Clerk Maxwell telescope

    Get PDF
    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission

    The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies

    Get PDF
    Using the new capabilities of the Spitzer Space Telescope and extensive multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), it is now possible to study the infrared properties of star formation in nearby galaxies down to scales equivalent to large HII regions. We are therefore able to determine what fraction of large, infrared-selected star-forming regions in normal galaxies are highly obscured and address how much of the star formation we miss by relying solely on the optical portion of the spectrum. Employing a new empirical method for deriving attenuations of infrared-selected star-forming regions we investigate the statistics of obscured star formation on 500pc scales in a sample of 38 nearby galaxies. We find that the median attenuation is 1.4 magnitudes in H-alpha and that there is no evidence for a substantial sub-population of uniformly highly-obscured star-forming regions. The regions in the highly-obscured tail of the attenuation distribution (A_H-alpha > 3) make up only ~4% of the sample of nearly 1800 regions, though very embedded infrared sources on the much smaller scales and lower luminosities of compact and ultracompact HII regions are almost certainly present in greater numbers. The highly-obscured cases in our sample are generally the bright, central regions of galaxies with high overall attenuation but are not otherwise remarkable. We also find that a majority of the galaxies show decreasing radial trends in H-alpha attenuation. The small fraction of highly-obscured regions seen in this sample of normal, star-forming galaxies suggests that on 500pc scales the timescale for significant dispersal or break up of nearby, optically-thick dust clouds is short relative to the lifetime of a typical star-forming region.Comment: Accepted for publication in ApJ; emulateapj style, 30 pages, 18 figures (compressed versions), 3 table

    Warm Dust and Spatially Variable PAH Emission in the Dwarf Starburst Galaxy NGC 1705

    Full text link
    We present Spitzer observations of the dwarf starburst galaxy NGC 1705 obtained as part of SINGS. The galaxy morphology is very different shortward and longward of ~5 microns: short-wavelength imaging shows an underlying red stellar population, with the central super star cluster (SSC) dominating the luminosity; longer-wavelength data reveals warm dust emission arising from two off-nuclear regions offset by ~250 pc from the SSC. These regions show little extinction at optical wavelengths. The galaxy has a relatively low global dust mass (~2E5 solar masses, implying a global dust-to-gas mass ratio ~2--4 times lower than the Milky Way average). The off-nuclear dust emission appears to be powered by photons from the same stellar population responsible for the excitation of the observed H Alpha emission; these photons are unassociated with the SSC (though a contribution from embedded sources to the IR luminosity of the off-nuclear regions cannot be ruled out). Low-resolution IRS spectroscopy shows moderate-strength PAH emission in the 11.3 micron band in the eastern peak; no PAH emission is detected in the SSC or the western dust emission complex. There is significant diffuse 8 micron emission after scaling and subtracting shorter wavelength data; the spatially variable PAH emission strengths revealed by the IRS data suggest caution in the interpretation of diffuse 8 micron emission as arising from PAH carriers alone. The metallicity of NGC 1705 falls at the transition level of 35% solar found by Engelbracht and collaborators; the fact that a system at this metallicity shows spatially variable PAH emission demonstrates the complexity of interpreting diffuse 8 micron emission. A radio continuum non-detection, NGC 1705 deviates significantly from the canonical far-IR vs. radio correlation. (Abridged)Comment: ApJ, in press; please retrieve full-resolution version from http://www.astro.wesleyan.edu/~cannon/pubs.htm

    The Nature of Infrared Emission in the Local Group Dwarf Galaxy NGC 6822 As Revealed by Spitzer

    Get PDF
    We present Spitzer imaging of the metal-deficient (Z ~30% Z_sun) Local Group dwarf galaxy NGC 6822. On spatial scales of ~130 pc, we study the nature of IR, H alpha, HI, and radio continuum emission. Nebular emission strength correlates with IR surface brightness; however, roughly half of the IR emission is associated with diffuse regions not luminous at H alpha (as found in previous studies). The global ratio of dust to HI gas in the ISM, while uncertain at the factor of ~2 level, is ~25 times lower than the global values derived for spiral galaxies using similar modeling techniques; localized ratios of dust to HI gas are about a factor of five higher than the global value in NGC 6822. There are strong variations (factors of ~10) in the relative ratios of H alpha and IR flux throughout the central disk; the low dust content of NGC 6822 is likely responsible for the different H alpha/IR ratios compared to those found in more metal-rich environments. The H alpha and IR emission is associated with high-column density (> ~1E21 cm^-2) neutral gas. Increases in IR surface brightness appear to be affected by both increased radiation field strength and increased local gas density. Individual regions and the galaxy as a whole fall within the observed scatter of recent high-resolution studies of the radio-far IR correlation in nearby spiral galaxies; this is likely the result of depleted radio and far-IR emission strengths in the ISM of this dwarf galaxy.Comment: ApJ, in press; please retrieve full-resolution version from http://www.astro.wesleyan.edu/~cannon/pubs.htm

    Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    Get PDF
    We present Spitzer 3.6-160 micron images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 micron images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 10^9 M_solar low luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGN in previous research. The weak nuclear 160 micron emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to fuel circumnuclear star formation and Seyfert-like AGN activity. Surprisingly, the AGN is the predominant source of 850 micron emission. We examine the possible emission mechanisms that could give rise to the 850 micron emission and find that neither thermal dust emission, CO line emission, bremsstrahlung emission, nor the synchrotron emission observed at radio wavelengths can adequately explain the measured 850 micron flux density by themselves. The remaining possibilities for the source of the 850 micron emission include a combination of known emission mechanisms, synchrotron emission that is self-absorbed at wavelengths longer than 850 microns, or unidentified spectral lines in the 850 micron band.Comment: Accepted to ApJ, 200

    First look at the Fomalhaut debris disk with the Spitzer Space Telescope

    Get PDF
    We present Spitzer Space Telescope early release observations of Fomalhaut, a nearby A-type star with dusty circumstellar debris. The disk is spatially resolved at 24, 70, and 160 � m using the Multiband Imaging Photometer for Spitzer (MIPS). While the disk orientation and outer radius are comparable to values measured in the submillimeter, the disk inner radius cannot be precisely defined: the central hole in the submillimeter ring is at least partially filled with emission from warm dust, seen inSpitzerInfrared Spectrograph (IRS) 17.5‐34 � m spectra and MIPS 24 � m images. The disk surface brightness becomes increasingly asymmetric toward shorter wavelengths, with the south-southeast ansa always brighter than the north-northwest one. This asymmetry may reflect perturbations on the disk by an unseen interior planet. Subject headingg circumstellar matter — infrared: stars — planetary systems — stars: individual (Fomalhaut

    Warm Dust and Spatially Variable Polycyclic Aromatic Hydrocarbon Emission in the Dwarf Starburst Galaxy NGC 1705

    Get PDF
    We present Spitzer observations of the nearby dwarf starburst galaxy NGC 1705 obtained as part of the Spitzer Infrared Nearby Galaxies Survey. The galaxy morphology is very different shortward and longward of ~5 μm: optical and short-wavelength IRAC imaging shows an underlying red stellar population, with the central super star cluster (SSC) dominating the luminosity; longer wavelength IRAC and MIPS imaging reveals warm dust emission arising from two off-nuclear regions that are offset by ~250 pc from the SSC and that dominate the far-IR flux of the system. These regions show little extinction at optical wavelengths. The galaxy has a relatively low global dust mass (~2 × 10^5 M_☉, implying a global dust-to-gas mass ratio ~2-4 times lower than the Milky Way average, roughly consistent with the metallicity decrease). The off-nuclear dust emission appears to be powered by photons from the same stellar population responsible for the excitation of the observed Hα emission; these photons are unassociated with the SSC (although a contribution from embedded sources to the IR luminosity of the off-nuclear regions cannot be ruled out). Low-resolution IRS spectroscopy shows moderate-strength PAH emission in the 11.3 μm band in the more luminous eastern peak; no PAH emission is detected in the SSC or the western dust emission complex. There is significant diffuse emission in the IRAC 8 μm band after starlight has been removed by scaling shorter wavelength data; the fact that IRS spectroscopy shows spatially variable PAH emission strengths compared to the local continuum within this diffuse gas suggests caution in the interpretation of IRAC diffuse 8 μm emission as arising from PAH carriers alone. The nebular metallicity of NGC 1705 falls at the transition level of ~0.35 Z_☉ found by Engelbracht and collaborators, below which PAH emission is difficult to detect; the fact that a system at this metallicity shows spatially variable PAH emission demonstrates the complexity of interpreting diffuse 8 μm emission in galaxies. NGC 1705 deviates significantly from the canonical far-infrared versus radio correlation, having significant far-infrared emission but no detected radio continuum

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps : Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.Peer reviewe

    Pregnancy-Related Low Back Pain

    No full text
    corecore